首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the sodium nitroprusside (SNP), a nitric oxide (NO) donor clinically used in the treatment of hypertensive emergencies on the energy production of rat reticulocytes were investigated. Rat reticulocyte-rich red blood cell suspensions were aerobically incubated without (control) or in the presence of different concentrations of SNP (0.1, 0.25, 0.5, 1.0 mM). SNP decreased total and coupled, but increased uncoupled oxygen consumption. This was accompanied by the stimulation of glycolysis, as measured by increased glucose consumption and lactate accumulation. Levels of all glycolytic intermediates indicate stimulation of hexokinase-phosphofructo kinase (HK-PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPD) and pyruvate kinase (PK) activities in the presence of SNP. Due to the decrease of coupled oxygen consumption in the presence of SNP, ATP production via oxidative phosphorylation was significantly diminished. Simultaneous increase of glycolytic ATP production was not enough to provide constant ATP production. In addition, SNP significantly decreased ATP level, which was accompanied with increased ADP and AMP levels. However, the level of total adenine nucleotides was significantly lower, which was the consequence of increased catabolism of adenine nucleotides (increased hypoxanthine level). ATP/ADP ratio and adenylate energy charge level were significantly decreased. In conclusion, SNP induced inhibition of oxidative phosphorylation, stimulation of glycolysis, but depletion of total energy production in rat reticulocytes. These alterations were accompanied with instability of energy status.  相似文献   

2.
Although metformin has been used to treat type 2 diabetes for several decades, the mechanism of its action on glucose metabolism remains controversial. To further assess the effect of metformin on glucose metabolism this work was undertaken to investigate the acute actions of metformin on glycogenolysis, glycolysis, gluconeogenesis, and ureogenesis in perfused rat livers. Metformin (5 mM) inhibited oxygen consumption and increased glycolysis and glycogenolysis in livers from fed rats. In perfused livers of fasted rats, the drug (concentrations higher than 1.0 mM) inhibited oxygen consumption and glucose production from lactate and pyruvate. Gluconeogenesis and ureogenesis from alanine were also inhibited. The cellular levels of ATP were decreased by metformin whereas the AMP levels of livers from fasted rats were increased. Taken together our results indicate that the energy status of the cell is probably compromised by metformin. The antihyperglycemic effect of metformin seems to be the result of a reduced oxidative phosphorylation without direct inhibition of key enzymatic activities of the gluconeogenic pathway. The AMP-activated protein kinase cascade could also be a probable target for metformin, which switches on catabolic pathways such as glycogenolysis and glycolysis, while switches off ATP consuming processes.  相似文献   

3.
Since nitric oxide (NO) in many cells is involved in energy metabolism, the aim of this study was to evaluate the role of isosorbide dinitrate (ISDN), a NO donor, in energy metabolism of rat reticulocytes, particularly due to their high content of hemoglobin--an effective scavenger of NO. Rat reticulocyte-rich red blood cell suspensions were aerobically incubated in the absence (control) or in the presence of different concentrations of ISDN. ISDN decreased total and coupled oxygen consumption (p<0.05) while increased uncoupled oxygen consumption (p<0.05) in a dose- and time-dependent manner. This was followed by enhancement of glycolysis, as measured by increased glucose consumption and lactate accumulation (p<0.05). Levels of all glycolytic intermediates in the presence of ISDN indicate only stimulation of pyruvate kinase activity. ISDN did not alter the concentration of ATP, while increased ADP and AMP levels (p>0.05). In rat reticulocytes under steady-state conditions, 95.4% of overall energy was produced by oxidative phosphorylation but only 4.6% by glycolysis. Due to a reduced coupled oxygen consumption in the presence of ISDN, ATP production via oxidative phosphorylation was significantly diminished. A simultaneous increase of glycolytic ATP production is not enough to ensure constant ATP production. The calculated mean ATP turnover time was prolonged by 199% in the presence of 1.5 mmol/l ISDN. In conclusion, ISDN a) inhibited total and coupled respiration but enhanced uncoupled respiration, b) stimulated glycolysis, c) decreased ATP production and d) prolonged ATP turnover time in rat reticulocytes. These effects were mediated by NO as the effector molecule.  相似文献   

4.
Understanding quantitative aspects of cell energy metabolism and how it is influenced by environment is central to biology, medicine, and biotechnology. Most methods used for measuring metabolic fluxes associated with energy metabolism require considerable personnel effort or high maintenance instrumentation. The microphysiometer is a commercially available instrument that measures acid extrusion rates, which are commonly used for drug screening. With the addition of oxygen sensors, the instrument can also be used to measure cell oxygen consumption rates and thereby calculate glycolytic fluxes. In the work described here, oxygen consumption and acid extrusion rates were used to measure glucose utilization by the H9c2 rat heart myoblast cell line and these results are compared with fluxes measured with a radiometric assay. Both assays were used to investigate changes in H9c2 energy metabolism due to cell stimulation with carbachol and insulin. The results demonstrate the utility of the microphysiometer method for measuring both transient and sustained changes in partitioning of glucose utilization between glycolysis and oxidation in live cells.  相似文献   

5.
Growing oocytes in vitro from the most immature stages until they are developmentally competent is a major goal of reproductive technology, requiring fundamental knowledge of metabolic processes. Carbohydrate metabolism and oxygen consumption have been analysed in a series of experiments designed to investigate important energy substrates for mouse oocytes and to reveal any qualitative or quantitative changes between the primordial and ovulatory follicle stages. Primordial follicles were incubated in groups in modified-KSOM medium, whereas growing or ovulated oocytes were studied singly and, in both cases, the depletion or accumulation of metabolites in spent medium were analysed using ultramicrofluorometric assays. The rates of glucose (0.014 +/- 0.006 pmol/hr) and pyruvate (0.028 +/- 0.009 pmol/hr) consumption and l-lactate (0.058 +/- 0.023 pmol/hr) production by primordial follicles suggested that energy production was supported by a combination of metabolic pathways, including glycolysis. Pyruvate and oxygen consumption per oocyte increased two- and ninefold, respectively, between the primary and pre-ovulatory stages (0.82 +/- 0.1 and 1.67 +/- 0.1 pmol pyruvate/hr, respectively and 1.4 +/- 0.3 and 7 +/- 0.6 pmol oxygen/hr) after which oxygen (12.7 +/- 1.1 pmol/hr) utilisation nearly doubled. Oxygen consumption by fully grown oocytes was in excess of oxidation requirements for pyruvate. When pyruvate and oxygen consumption rates were normalised for oocyte cellular volume, which increased over 130-fold during growth, oocyte metabolism was higher in primary follicles than at any subsequent stage, indicating that energy needs are greater during a developmental transition. To conclude, pyruvate and oxygen were consumed throughout oocyte development at increasing rates. When oocyte cellular volume was accounted for, oocytes from primary follicles displayed greatest metabolic rates.  相似文献   

6.
7.
The renal cell line LLC-PK1 contransports Na and D -glucose from the apical to the basolateral side of the cell monolayer, and the short-circuit current (Isc) measures the net amount of Na transported. Under conditions of maximal cotransport, the addition of phlorizin or removal of Na rreversibly decreased oxygen consumption by one-hal. In the absence of glycolytic substrates, α-methyl-D -glucoside stimulated Isc and oxygen consumption, although the Isc came to a steady state 50% less than when glycolytic substrates were present. The addition of other aerobic substrates did not increase Isc; however, when non-contransported glycolytic substrates were introduced the Isc returned to a maximum with an associated fall in oxygen consumption and increased lactate production. Thus, in the absence of glycolytic substrates aerobic ATP formation may be rate-limiting for Na, D -glucose contansport. For this epithelium glycolysis makes an impotant contribution to the provision of energy or transport. Oxygen consumption does not correlate well with Isc and is not a good measured off the energy used in transport.  相似文献   

8.
A unique feature of cancer cells is to convert glucose into lactate to produce cellular energy, even under the presence of oxygen. Called aerobic glycolysis [The Warburg Effect] it has been extensively studied and the concept of aerobic glycolysis in tumor cells is generally accepted. However, it is not clear if aerobic glycolysis in tumor cells is fixed, or can be reversed, especially under therapeutic stress conditions. Here, we report that mTOR, a critical regulator in cell proliferation, can be relocated to mitochondria, and as a result, enhances oxidative phosphorylation and reduces glycolysis. Three tumor cell lines (breast cancer MCF-7, colon cancer HCT116 and glioblastoma U87) showed a quick relocation of mTOR to mitochondria after irradiation with a single dose 5 Gy, which was companied with decreased lactate production, increased mitochondrial ATP generation and oxygen consumption. Inhibition of mTOR by rapamycin blocked radiation-induced mTOR mitochondrial relocation and the shift of glycolysis to mitochondrial respiration, and reduced the clonogenic survival. In irradiated cells, mTOR formed a complex with Hexokinase II [HK II], a key mitochondrial protein in regulation of glycolysis, causing reduced HK II enzymatic activity. These results support a novel mechanism by which tumor cells can quickly adapt to genotoxic conditions via mTOR-mediated reprogramming of bioenergetics from predominantly aerobic glycolysis to mitochondrial oxidative phosphorylation. Such a “waking-up” pathway for mitochondrial bioenergetics demonstrates a flexible feature in the energy metabolism of cancer cells, and may be required for additional cellular energy consumption for damage repair and survival. Thus, the reversible cellular energy metabolisms should be considered in blocking tumor metabolism and may be targeted to sensitize them in anti-cancer therapy.  相似文献   

9.
Plants lack specialised organs and circulatory systems, and oxygen can fall to low concentrations in metabolically active, dense or bulky tissues. In animals that tolerate hypoxia or anoxia, low oxygen triggers an adaptive inhibition of respiration and metabolic activity. Growing potato tubers were used to investigate whether an analogous response exists in plants. Oxygen concentrations fall below 5% in the centre of growing potato tubers. This is accompanied by a decrease of the adenylate energy status, and alterations of metabolites that are indicative of a decreased rate of glycolysis. The response to low oxygen was investigated in more detail by incubating tissue discs from growing tubers for 2 hours at a range of oxygen concentrations. When oxygen was decreased in the range between 21% and 4% there was a partial inhibition of sucrose breakdown, glycolysis and respiration. The energy status of the adenine, guanine and uridine nucleotides decreased, but pyrophosphate levels remained high. The inhibition of sucrose breakdown and glycolysis was accompanied by a small increase of sucrose, fructose, glycerate-3-phosphate, phosphenolpyruvate, and pyruvate, a decrease of the acetyl-coenzymeA:coenzymeA ratio, and a small increase of isocitrate and 2-oxoglutarate. These results indicate that carbon fluxes are inhibited at several sites, but the primary site of action of low oxygen is probably in mitochondrial electron transport. Decreasing the oxygen concentration from 21% to 4% also resulted in a partial inhibition of sucrose uptake, a strong inhibition of amino acid synthesis, a decrease of the levels of cofactors including the adenine, guanine and uridine nucleotides and coenzymeA, and attenuated the wounding-induced increase of respiration and invertase and phenylalanine lyase activity in tissue discs. Starch synthesis was maintained at high rates in low oxygen. Anoxia led to a diametrically opposed response, in which glycolysis rose 2-fold to support fermentation, starch synthesis was strongly inhibited, and the level of lactate and the lactate:pyruvate ratio and the triose-phosphate:glycerate-3-phosphate ratio increased dramatically. It is concluded that low oxygen triggers (i) a partial inhibition of respiration leading to a decrease of the cellular energy status and (ii) a parallel inhibition of a wide range of energy-consuming metabolic processes. These results have general implications for understanding the regulation of glycolysis, starch synthesis and other biosynthetic pathways in plants, and reveal a potential role for pyrophosphate in conserving energy and decreasing oxygen consumption.  相似文献   

10.
Cell surface oxygen consumption by mitochondrial gene knockout cells   总被引:4,自引:0,他引:4  
Mitochondrial gene knockout (rho(0)) cells that depend on glycolysis for their energy requirements show an increased ability to reduce cell-impermeable tetrazolium dyes by electron transport across the plasma membrane. In this report, we show for the first time, that oxygen functions as a terminal electron acceptor for trans-plasma membrane electron transport (tPMET) in HL60rho(0) cells, and that this cell surface oxygen consumption is associated with oxygen-dependent cell growth in the absence of mitochondrial electron transport function. Non-mitochondrial oxygen consumption by HL60rho(0) cells was extensively inhibited by extracellular NADH and NADPH, but not by NAD(+), localizing this process at the cell surface. Mitochondrial electron transport inhibitors and the uncoupler, FCCP, did not affect oxygen consumption by HL60rho(0) cells. Inhibitors of glucose uptake and glycolysis, the ubiquinone redox cycle inhibitors, capsaicin and resiniferatoxin, the flavin centre inhibitor, diphenyleneiodonium, and the NQO1 inhibitor, dicoumarol, all inhibited oxygen consumption by HL60rho(0) cells. Similarities in inhibition profiles between non-mitochondrial oxygen consumption and reduction of the cell-impermeable tetrazolium dye, WST-1, suggest that both systems may share a common tPMET pathway. This is supported by the finding that terminal electron acceptors from both pathways compete for electrons from intracellular NADH.  相似文献   

11.
In response to exercise, the heart increases its metabolic rate severalfold while maintaining energy species (e.g., ATP, ADP, and Pi) concentrations constant; however, the mechanisms that regulate this response are unclear. Limited experimental studies show that the classic regulatory species NADH and NAD+ are also maintained nearly constant with increased cardiac power generation, but current measurements lump the cytosol and mitochondria and do not provide dynamic information during the early phase of the transition from low to high work states. In the present study, we modified our previously published computational model of cardiac metabolism by incorporating parallel activation of ATP hydrolysis, glycolysis, mitochondrial dehydrogenases, the electron transport chain, and oxidative phosphorylation, and simulated the metabolic responses of the heart to an abrupt increase in energy expenditure. Model simulations showed that myocardial oxygen consumption, pyruvate oxidation, fatty acids oxidation, and ATP generation were all increased with increased energy expenditure, whereas ATP and ADP remained constant. Both cytosolic and mitochondrial NADH/NAD+ increased during the first minutes (by 40% and 20%, respectively) and returned to the resting values by 10-15 min. Furthermore, model simulations showed that an altered substrate selection, induced by either elevated arterial lactate or diabetic conditions, affected cytosolic NADH/NAD+ but had minimal effects on the mitochondrial NADH/NAD+, myocardial oxygen consumption, or ATP production. In conclusion, these results support the concept of parallel activation of metabolic processes generating reducing equivalents during an abrupt increase in cardiac energy expenditure and suggest there is a transient increase in the mitochondrial NADH/NAD+ ratio that is independent of substrate supply.  相似文献   

12.
Nitric oxide (NO) in many cells inactivates aconitase and mitochondrial respiratory chain, and influenced glyceraldehyde 3-phosphate dehydrogenase activity. The aim of this study was to evaluate role of nitroglycerin (NTG), a widely used NO donor, on energy metabolism of rat reticulocytes. Rat reticulocyte rich red blood cell suspensions containing 70-100% of reticulocytes, were aerobically incubated without (control) or in the presence of different concentrations of (a) NTG (0.1, 0.25, 0.5, 1.0, 1.5 mmol/l), (b) 8-Br-cGMP (0.1, 0.5, 1.0 mmol/l) and (c) NaNO2 and NaNO3 (1 mmol/l). NTG in dose- and time-dependent manner decreased total (p>0.05; EC50 = 0.78+/-0.05 mmol/l) and coupled (p<0.05; EC50 = 0.50+/-0.04 mmol/l) and increased uncoupled oxygen consumption (p<0.05: EC50 = 0.36+/-0.01 mmol/l). They were accompanied by stimulation of glycolysis, as measured by increased glucose consumption and lactate accumulation (p<0.001 EC50 = 0.53 and 0.53 mmol/l, respectively). Levels of all glycolytic intermediates in the presence of NTG indicate stimulation of HK-PFK, GA3PDH and PK activity. NTG significantly decreased ATP level, which accompanied by increased ADP and AMP levels. However, level of total adenine nucleotides (TAN) was significantly lower, which was consequence of increased catabolism of adenine nucleotides (increased hypoxanthine level; p<0.05). Stimulation of glycolysis accompanied with inhibition of the OxP, activation of HK-PFK, decrease of ATP and simultaneous rise of ADP and AMP levels, all together represent an example of Pasteur effect occurring in NTG-treated reticulocytes. In rat reticulocytes under steady state conditions 93% of overall energy was produced by OxP, but only 7% by glycolysis. Due to decrease of coupled oxygen consumption in the presence of NTG, ATP production via OxP was significantly diminished. Simultaneous increase of glycolytic ATP production is not enough to provide constant either ATP production or concentration. Calculated mean ATP-turnover time was prolonged even for 45% in the presence of 1.5 mmol/l NTG. Metabolic effects of NTG were not mimic by exogenous 8-Br-cGMP, NaNO2 or NaNO3, which indicate that NTG induced a) inhibition of coupled respiration and b) stimulation of glycolysis in rat reticulocytes are mediated by NO as an effector molecule.  相似文献   

13.
14.
Recent studies have shown that cellular bioenergetics may be involved in stem cell differentiation. Considering that during cancerogenesis cells acquire numerous properties of stem cells, it is possible to assume that the energy metabolism in tumorigenic cells might be differently regulated. The aim of this study was to compare the mitochondrial bioenergetic profile of normal pluripotent human embryonic stem cells (hESC) and relatively nullipotent embryonal carcinoma cells (2102Ep cell line).We examined three parameters related to cellular bioenergetics: phosphotransfer system, aerobic glycolysis, and oxygen consumption. Activities and expression levels of main enzymes that facilitate energy transfer were measured. The oxygen consumption rate studies were performed to investigate the respiratory capacity of cells.2102Ep cells showed a shift in energy distribution towards adenylate kinase network. The total AK activity was almost 3 times higher in 2102Ep cells compared to hESCs (179.85 ± 5.73 vs 64.39 ± 2.55 mU/mg of protein) and the expression of AK2 was significantly higher in these cells, while CK was downregulated. 2102Ep cells displayed reduced levels of oxygen consumption and increased levels of aerobic glycolysis compared to hESCs. The compromised respiration of 2102Ep cells is not the result of increased mitochondrial mass, increased proton leak, and reduced respiratory reserve capacity of the cells or impairment of respiratory chain complexes. Our data showed that the bioenergetic profile of 2102Ep cells clearly distinguishes them from normal hESCs. This should be considered when this cell line is used as a reference, and highlight the importance of further research concerning energy metabolism of stem cells.  相似文献   

15.
1. The work of the perfused rat heart was acutely increased by raising the aortic pressure in the Langendorff preparation from 50 to 120mmHg; within 1 min in perfusions with media containing glucose or glucose+acetate, rates of oxygen consumption and tricarboxylate-cycle turnover increased 2.5-fold, glycolysis rate doubled and oxidation of triglyceride fatty acid was strikingly enhanced. 2. Increased cardiac work had no significant effects on the heart concentrations of creatine phosphate, ATP, ADP or 5′-AMP. The only significant changes in tricarboxylate-cycle intermediates were a decrease in malate in perfusions with glucose and decreases in acetyl-CoA and citrate and an increase in aspartate in perfusions with glucose+acetate. 3. Measurements of intracellular concentrations of hexose phosphates, glucose and glycogen indicated that work accelerated glycolysis by activation of phosphofructokinase and subsequently hexokinase; the activation could not be accounted for by changes in the known effectors of phosphofructokinase. 4. Acetate at either perfusion pressure increased heart concentrations of acetyl-CoA, citrate, glutamate and malate and decreased that of aspartate; acetate increased tricarboxylate-cycle turnover by 50–60% and inhibited glycolysis and pyruvate oxidation. 5. In view of the markedly different effects of acetate and of cardiac work on the concentrations of cycle intermediates the changes that accompany acetate utilization may be specifically concerned with the regulatory functions of the cycle in control of glycolysis and pyruvate oxidation and not with the associated increase in cycle turnover. It is suggested that the concentrations of key metabolites controlling the rate of cycle turnover may fluctuate with each heart beat and that this may explain why no significant changes (for example, in adenine nucleotide concentrations) have been detected with increased work in the present study.  相似文献   

16.

Background

The unique metabolism of tumors was described many years ago by Otto Warburg, who identified tumor cells with increased glycolysis and decreased mitochondrial activity. However, “aerobic glycolysis” generates fewer ATP per glucose molecule than mitochondrial oxidative phosphorylation, so in terms of energy production, it is unclear how increasing a less efficient process provides tumors with a growth advantage.

Methods/Findings

We carried out a screen for loss of genetic elements in pancreatic tumor cells that accelerated their growth as tumors, and identified mitochondrial ribosomal protein L28 (MRPL28). Knockdown of MRPL28 in these cells decreased mitochondrial activity, and increased glycolysis, but paradoxically, decreased cellular growth in vitro. Following Warburg''s observations, this mutation causes decreased mitochondrial function, compensatory increase in glycolysis and accelerated growth in vivo. Likewise, knockdown of either mitochondrial ribosomal protein L12 (MRPL12) or cytochrome oxidase had a similar effect. Conversely, expression of the mitochondrial uncoupling protein 1 (UCP1) increased oxygen consumption and decreased tumor growth. Finally, treatment of tumor bearing animals with dichloroacetate (DCA) increased pyruvate consumption in the mitochondria, increased total oxygen consumption, increased tumor hypoxia and slowed tumor growth.

Conclusions

We interpret these findings to show that non-oncogenic genetic changes that alter mitochondrial metabolism can regulate tumor growth through modulation of the consumption of oxygen, which appears to be a rate limiting substrate for tumor proliferation.  相似文献   

17.
Relation of actin fibrils to energy metabolism of endothelial cells   总被引:1,自引:0,他引:1  
Summary The physiological significance of the association of glycolytic enzymes with actin fibrils was investigated in cell culture. Cytochalasin D (CD) was used to induce the known actin-based sequence of events in a culture of an endothelial-cell line (XTH-2) derived from hearts from tadpoles of Xenopus laevis. 1 min following addition of CD, ruptures in the cortical fibrillar meshwork and in stress fibres are seen. At the same time the cellular ATP level decreases by ca. 25%. This and the following reactions resulting in a kind of arborization depend on a continuous supply with metabolic energy. As shown by measurements of oxygen consumption, cells with intact energy metabolism provide the ATP needed from glycolysis; ATP produced by oxidative phosphorylation is not ultilized as long as lactate dehydrogenase (LDH) reoxidizes NADH2. After inhibition of LDH, respiration in XTH-2 cells doubles. CD treatment induces a transient increase in oxygen consumption, indicating an increased energy supply by respiration. From these results we conclude: The energy needed by the actomyosin system is — under normal metabolic conditions — supplied from ATP phosphorylated in glycolysis. The processes of energy metabolism seem to be highly compartmentalized; ATP is not a parameter that is kept constant in time intervals of minutes up to one hour.  相似文献   

18.
Creatine kinase (CK) and glycolysis represent important energy-buffering processes in the cardiac myocyte. Although the role of compartmentalized CK in energy transfer has been investigated intensely, similar duties for intracellular glycolysis have not been demonstrated. By measuring the response time of mitochondrial oxygen consumption to dynamic workload jumps (tmito) in isolated rabbit hearts, we studied the effect of inhibiting energetic systems (CK and/or glycolysis) on transcytosolic signal transduction that couples cytosolic ATP hydrolysis to activation of oxidative phosphorylation. Tyrode-perfused hearts were exposed to 15 min of the following: 1) 0.4 mM iodoacetamide (IA; n = 6) to block CK (CK activity <3% vs. control), 2) 0.3 mM iodoacetic acid (IAA; n = 5) to inhibit glycolysis (GAPDH activity <3% vs. control), or 3) vehicle (control, n = 7) at 37 degrees C. Pretreatment tmito was similar across groups at 4.3 +/- 0.3 s (means +/- SE). No change in tmito was observed in control hearts; however, in IAA- and IA-treated hearts, tmito decreased by 15 +/- 3% and 40 +/- 5%, respectively (P < 0.05 vs. control), indicating quicker energy supply-demand signaling in the absence of ADP/ATP buffering by CK or glycolysis. The faster response times in IAA and IA groups were independent of the size of the workload jump, and the increase in myocardial oxygen consumption during workload steps was unaffected by CK or glycolysis blockade. Contractile function was compromised by IAA and IA treatment versus control, with contractile reserve (defined as increase in rate-pressure product during a standard heart rate jump) reduced to 80 +/- 8% and 80 +/- 10% of baseline, respectively (P < 0.05 vs. control), and significant elevations in end-diastolic pressure, suggesting raised ADP concentration. These results demonstrate that buffering of phosphate metabolites by glycolysis in the cytosol contributes appreciably to slower mitochondrial activation and may enhance contractile efficiency during increased cardiac workloads. Glycolysis may therefore play a role similar to CK in heart muscle.  相似文献   

19.
The objective of this study was to evaluate whether the nitric oxide (NO) released from vascular endothelial cells would decrease vessel wall oxygen consumption by decreasing the energy expenditure of mechanical work by vascular smooth muscle. The oxygen consumption rate of arteriolar walls in rat cremaster muscle was determined in vivo during NO-dependent and -independent vasodilation on the basis of the intra- and perivascular oxygen tension (Po2) measured by phosphorescence quenching laser microscopy. NO-dependent vasodilation was induced by increased NO production due to increased blood flow, whereas NO-independent vasodilation was induced by topical administration of papaverine. The energy efficiency of vessel walls was evaluated by the variable ratio of circumferential wall stress (amount of mechanical work) to vessel wall oxygen consumption rate (energy cost) in the arteriole between normal and vasodilated conditions. NO-dependent and -independent dilation increased arteriolar diameters by 13 and 17%, respectively, relative to the values under normal condition. Vessel wall oxygen consumption decreased significantly during both NO-dependent and -independent vasodilation compared with that under normal condition. However, vessel wall oxygen consumption during NO-independent vasodilation was significantly lower than that during NO-dependent vasodilation. On the other hand, there was no significant difference between the energy efficiency of vessel walls during NO-dependent and -independent vasodilation, suggesting the decrease in vessel wall oxygen consumption produced by NO to be related to reduced mechanical work of vascular smooth muscle.  相似文献   

20.
Metabolic adaptations are emerging as common traits of cancer cells and tumor progression. In vitro transformation of NIH 3T3 cells allows the analysis of the metabolic changes triggered by a single oncogene. In this work, we have compared the metabolic changes induced by H-RAS and by the nuclear resident mutant of histone deacetylase 4 (HDAC4). RAS-transformed cells exhibit a dominant aerobic glycolytic phenotype characterized by up-regulation of glycolytic enzymes, reduced oxygen consumption and a defect in complex I activity. In this model of transformation, glycolysis is strictly required for sustaining the ATP levels and the robust cellular proliferation. By contrast, in HDAC4/TM transformed cells, glycolysis is only modestly up-regulated, lactate secretion is not augmented and, instead, mitochondrial oxygen consumption is increased. Our results demonstrate that cellular transformation can be accomplished through different metabolic adaptations and HDAC4/TM cells can represent a useful model to investigate oncogene-driven metabolic changes besides the Warburg effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号