首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High oxygen tension is a major factor in the genesis of retinopathy of prematurity (ROP). However, clinical and experimental evidence also suggest a significant role for high levels of carbon dioxide (CO(2)). Hypercapnia is a facilitator of nitration in vitro, and nitrative stress is known to have an important role in microvascular degeneration leading to ischemia in conditions such as ROP. We hereby present evidence that prolonged exposure to CO(2) impairs developmental retinal neovascularisation through a mechanism involving increased endothelial nitric oxide synthase and induction of a nitrative stress; effects of hypercapnia are independent of its hyperaemic effects. Moreover, in a model of oxygen-induced retinopathy, we demonstrate that an in vivo nitrative stress associated with retinal vasoobliteration results in nitration of cis-arachidonic acids into trans-arachidonic acids (TAAs). TAAs act in turn as mediators of nitrative stress by causing microvascular degeneration by inducing expression of the anti-angiogenic factor thrombospondin-1. These recent findings establish a previously unexplored means by which hypercapnia hinders efficient neovascularisation and provide new insight into the molecular mechanisms of nitrative stress on microvascular injury involving TAA, therefore opening new therapeutic avenues in the management of nitrative stress disorders such as in ischemic retinopathies (of prematurity and of diabetes) and encephalopathies.  相似文献   

2.
Vascularization is essential for tissue development and in restoration of tissue integrity after an ischemic injury. In studies of vascularization, the focus has largely been placed on vascular endothelial growth factor (VEGF), yet other factors may also orchestrate this process. Here we show that succinate accumulates in the hypoxic retina of rodents and, via its cognate receptor G protein-coupled receptor-91 (GPR91), is a potent mediator of vessel growth in the settings of both normal retinal development and proliferative ischemic retinopathy. The effects of GPR91 are mediated by retinal ganglion neurons (RGCs), which, in response to increased succinate levels, regulate the production of numerous angiogenic factors including VEGF. Accordingly, succinate did not have proangiogenic effects in RGC-deficient rats. Our observations show a pathway of metabolite signaling where succinate, acting through GPR91, governs retinal angiogenesis and show the propensity of RGCs to act as sensors of ischemic stress. These findings provide a new therapeutic target for modulating revascularization.  相似文献   

3.
Loss of endothelial function is a common feature to all cardiovascular diseases (CVDs). One of the risk factors associated with the development of CVDs is the hyperglycaemia that occurs in patients with metabolic disorders such as Type 1 and Type 2 diabetes mellitus. Hyperglycaemia causes endothelial dysfunction through increased production of reactive oxygen species (ROS) from different cellular sources leading to oxidative stress. Vascular endothelial growth factor (VEGF) is essential in the stimulation and maintenance of endothelial functional aspects and, although it can mitigate the impact of ROS, VEGF-mediated signalling is partially inhibited in diabetes mellitus. The search for therapeutic strategies that preserve, protect and improve the functions of the endothelium is of great relevance in the investigation of  CVDs associated with hyperglycaemia. Platelet-derived growth factor C (PDGF-C) is a peptide with angiogenic properties, independent of VEGF, that stimulates angiogenesis and revascularization of ischemic tissue. In a diabetic mouse model, PDGF-C stimulates mature endothelial cell migration, angiogenesis, endothelial progenitor cell mobilization, and increased neovascularization, and protects blood vessels in a retinal degeneration model activating anti-apoptosis and proliferation signalling pathways in endothelial cells. This review summarizes the information on the damage that high d-glucose causes on endothelial function and the beneficial effects that PDGF-CC could exert in this condition.  相似文献   

4.
Basic fibroblast growth factor (bFGF) is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Müller) cells, and to determine conditions under which glial bFGF may stimulate the proliferation of retinal microvascular endothelial cells. Immunofluorescence labeling detected bFGF in Müller cells of the rat retina and in acutely isolated Müller cells with bFGF levels, which increased after ischemia-reperfusion in postischemic retinas. In patients with proliferative diabetic retinopathy or myopia, the immunoreactivity of bFGF co-localized to glial fibrillary acidic protein (GFAP)-positive cells in surgically excised retinal tissues. RT-PCR and ELISA analyses indicated that cultured Müller cells produce bFGF, which is elevated under hypoxia or oxidative stress, as well as under stimulation with various growth factors and cytokines, including pro-inflammatory factors. When retinal endothelial cells were cultured in the presence of media from hypoxia (0.2%)-conditioned Müller cells, a distinct picture of endothelial cell proliferation emerged. Media from 24-h cultured Müller cells inhibited proliferation, whereas 72-h conditioned media elicited a stimulatory effect. BFGF-neutralizing antibodies suppressed the enhanced endothelial cell proliferation to a similar extent as anti-VEGF antibodies. Furthermore, phosphorylation of extracellular signal-regulated kinases (ERK−1/−2) in retinal endothelial cells was increased when the cells were cultured in 72-h conditioned media, while neutralizing bFGF attenuated the activation of this signaling pathway. These data provide evidence that retinal (glial) Müller cells are major sources of bFGF in the ischemic retina. Müller cells under physiological conditions or transient hypoxia seem to provide an anti-angiogenic environment, but long-lasting hypoxia causes the release of bFGF, which might significantly co-stimulate neovascularization in the retina.  相似文献   

5.
Principals of neovascularization for tissue engineering   总被引:31,自引:0,他引:31  
The goals in tissue engineering include the replacement of damaged, injured or missing body tissues with biological compatible substitutes such as bioengineered tissues. However, due to an initial mass loss after implantation, improved vascularization of the regenerated tissue is essential. Recent advances in understanding the process of blood vessel growth has offered significant tools for therapeutic neovascularization. Several angiogenic growth factors including vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (bFGF) were used for vascularization of ischemic tissues. Three approaches have been used for vascularization of bioengineered tissue: incorporation of angiogenic factors in the bioengineered tissue, seeding endothelial cells with other cell types and prevascularization of matrices prior to cell seeding. This paper reviews the process of blood vessel growth and tissue vascularization, and discuss strategies for efficient vascularization of engineered tissues.  相似文献   

6.
Neovascularization induced by vascular endothelial growth factor (VEGF) represents an appealing approach for treating ischemic heart disease. However, VEGF therapy has been associated with transient therapeutic effects and potential risk for hemangioma growth. Adult mesenchymal stem cells (MSCs) derived from bone marrow are a promising source for tissue regeneration and repair. In order to achieve a safe and persistent angiogenic effect, we have explored the potential of autologous MSCs transplantation to enhance angiogenesis and cardiac function of ischemic hearts. One week after myocardial infarction induced by occlusion of left anterior descending artery, autologous MSCs expanded in vitro was administrated intramyocardially into the infarct area of the same donor rats. By 2 months, MSCs implantation significantly elevated VEGF expression levels, accompanied by increased vascular density and regional blood flow in the infarct zone. The neovascularization resulted in a decreased apoptosis of hypertrophied myocytes and markedly improved the left ventricular contractility (ejection fraction: 79.9+/-7.6% vs. 37.2+/-6.9% in control animals). Therefore, mechanisms underlying MSCs improvement of cardiac functions may involve neovascularization induced by differentiation of MSCs to endothelial cells and para-secretion of growth factors, in addition to the apoptosis reduction and previously reported cardiomyocytes regeneration. Two months after cell transplantation, there are significant improvement of left ventricular function. Hence, autologous MSCs transplantation may represent a promising therapeutic strategy free of ethical concerns and immune rejection, for neovascularization in ischemic heart diseases.  相似文献   

7.
Redox signaling in vascular angiogenesis   总被引:19,自引:0,他引:19  
Angiogenesis is thought to be regulated by several growth factors (EGF, TGF-alpha, beta-FGF, VEGF). Induction of these angiogenic factors is triggered by various stresses. For instance, tissue hypoxia exerts its pro-angiogenic action through various angiogenic factors, the most notable being vascular endothelial growth factor, which has been mainly associated with initiating the process of angiogenesis through the recruitment and proliferation of endothelial cells. Recently, reactive oxygen species (ROS) have been found to stimulate angiogenic response in the ischemic reperfused hearts. Short exposure to hypoxia/reoxygenation, either directly or indirectly, produces ROS that induce oxidative stress which is associated with angiogenesis or neovascularization. ROS can cause tissue injury in one hand and promote tissue repair in another hand by promoting angiogenesis. It thus appears that after causing injury to the cells, ROS promptly initiate the tissue repair process by triggering angiogenic response.  相似文献   

8.
The graft of omental pedicle is known to be clinically effective for wound healing and revascularization of ischemic organs. We found that bovine greater omentum contained growth factor that was capable of stimulating the proliferation of bovine aortic endothelial cells. Gel filtration of the tissue extract showed at least two activity peaks corresponding to molecular weights of 96,000 and 21,000. The major Mr 21,000 growth factor was partially purified approx 120-fold from the omental extract. The purified factor was not mitogenic to BALB/c 3T3 cells and, importantly, had no affinity for immobilized heparin. This factor is thus clearly distinct from fibroblast growth factors and related mitogens. The pI of the factor was estimated to be 5.6-6.0. This factor may be involved in the potent angiogenic activity expressed by the implanted omentum. The omental fat, which was previously shown to cause neovascularization in the assay in vivo, did not promote the growth of endothelial cells in vitro.  相似文献   

9.
Despite the deleterious effects associated with elevated carbon dioxide (CO(2)) or hypercapnia, it has been hypothesized that CO(2) can protect the lung from injury. However, the effects of chronic hypercapnia on the neonatal lung are unknown. Hence, we investigated the effect of chronic hypercapnia on neonatal mouse lung to identify genes that could potentially contribute to hypercapnia-mediated lung protection. Newborn mouse litters were exposed to 8% CO(2), 12% CO(2), or room air for 2 wk. Lungs were excised and analyzed for morphometric alterations. The alveolar walls of CO(2)-exposed mice appeared thinner than those of controls. Analyses of gene expression differences by microarrays revealed that genes from a variety of functional categories were differentially expressed following hypercapnia treatment, including those encoding growth factors, chemokines, cytokines, and endopeptidases. In particular and of major interest, the expression level of genes encoding surfactant proteins A and D, as well as chloride channel calcium-activated 3, were significantly increased, but the expression of WNT1-inducible signaling pathway protein 2 was significantly decreased. The significant changes in gene expression occurred mostly at 8% CO(2), but only a few at 12% CO(2). Our results lead us to conclude that 1) there are a number of gene families that may contribute to hypercapnia-mediated lung protection; 2) the upregulation of surfactant proteins A and D may play a role as anti-inflammatory or antioxidant agents; and 3) the effects of CO(2) seem to depend on the level to which the lung is exposed.  相似文献   

10.
The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow-derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.  相似文献   

11.
To achieve the goals of engineering large complex tissues, and possibly internal organs, vascularization of the regenerating tissue is essential. To maintain the initial volume after implantation of regenerated tissue, improved vascularization is considered to be important. Recent advances in understanding the process of blood vessel growth has offered significant tools for the neovascularization of bioengineered tissues and therapeutic angiogenesis. Several angiogenic growth factors including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF) were used for vascularization of ischemic tissues. Other approaches such as prevascularization of the scaffold, prior to cell seeding, and incorporation of endothelial cells in the bioengineered tissue showed encouraging results. In this article, we will review recent advances in angiogenic growth factors, and discuss the role of these growth factors and endothelial cells in therapeutic angiogenesis and tissue engineering.  相似文献   

12.
Adults maintain a reservoir of hematopoietic stem cells that can enter the circulation to reach organs in need of regeneration. We developed a novel model of retinal neovascularization in adult mice to examine the role of hematopoietic stem cells in revascularizing ischemic retinas. Adult mice were durably engrafted with hematopoietic stem cells isolated from transgenic mice expressing green fluorescent protein. We performed serial long-term transplants, to ensure activity arose from self-renewing stem cells, and single hematopoietic stem-cell transplants to show clonality. After durable hematopoietic engraftment was established, retinal ischemia was induced to promote neovascularization. Our results indicate that self-renewing adult hematopoietic stem cells have functional hemangioblast activity, that is, they can clonally differentiate into all hematopoietic cell lineages as well as endothelial cells that revascularize adult retina. We also show that recruitment of endothelial precursors to sites of ischemic injury has a significant role in neovascularization.  相似文献   

13.
Vascular development in the embryo requires coordinated signaling through several endothelial cell-specific receptors; however, it is not known whether this is also required later during retinal vascular development or as part of retinal neovascularization in adults. The Tie2 receptor has been implicated in stabilization and maturation of vessels through action of an agonist ligand, angiopoietin 1 (Ang1) and an antagonistic ligand, Ang2. In this study, we have demonstrated that ang2 mRNA levels are increased in the retina during development of the deep retinal capillaries by angiogenesis and during pathologic angiogenesis in a model of ischemic retinopathy. Mice with hemizygous disruption of the ang2 gene by insertion of a promoterless beta-galactosidase (beta gal) gene behind the ang2 promoter, show constitutive beta gal staining primarily in cells along the outer border of the inner nuclear layer identified as horizontal cells by colocalization of calbindin. During development of the deep capillary bed or retinal neovascularization, other cells in the inner nuclear layer and ganglion cell layer, in regions of neovascularization, stain for beta gal. Thus, there is temporal and spatial correlation of Ang2 expression with developmental and pathologic angiogenesis in the retina, suggesting that it may play a role.  相似文献   

14.
Human pathological conditions of the central nervous system (CNS) associated with angiogenesis (i.e. neovascularization) include neoplastic, as well as infectious, ischemic, and traumatic processes. Upregulation of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) and tenascin-C (TN-C) is spatially and temporally related to neovascularization. Spatially, VEGF/VPF and TN-C are both found at the site of neovascularization, but they are not detected in areas of normal brain or in areas without neovascularization. Temporally, VEGF/VPF and TN-C are found at the peak of angiogenesis and are not detected when angiogenesis had ceased.  相似文献   

15.
Adult 'endothelial progenitor cells'. Renewing vasculature   总被引:15,自引:0,他引:15  
During embryogenesis, endothelial progenitor cells participate in the initial processes of primitive blood vessel formation (vasculogenesis). It has become evident that progenitors to vascular endothelial cells also exist in the adult. Endothelial progenitors normally reside in the adult bone marrow but may become mobilized into circulation by cytokine or angiogenic growth factor signals from the periphery, enter extravascular tissue, and promote de novo vessel formation by virtue of physically integrating into vessels and/or supplying growth factors (adult vasculogenesis). For that reason, autologous endothelial progenitors, mobilized in situ or transplanted, has become a major target of therapeutic revascularization approaches to ischemic disease and endothelial injury. Moreover, endothelial progenitors represent a potential target of strategies to block tumor growth.  相似文献   

16.
Increased expression of vascular endothelial growth factor (VEGF) in the retina starting after postnatal day (P)7 results in neovascularization originating from deep retinal capillaries, but not those in the superficial capillary bed. Doxycycline was administered starting P0 to double transgenic mice with inducible expression of VEGF in the retina. These mice showed proliferation and dilation of superficial retinal capillaries, indicating that at this stage of development, the superficial capillaries are sensitive to the effects of VEGF. Angiopoietin-2 (Ang2) is expressed along the surface of the retina for several days after birth, but by P7 and later, Ang2 is only expressed in the region of the deep capillary bed. In mice with ubiquitous doxycycline-inducible expression of Ang2, in the absence of doxycycline, intravitreous injection of a gutless adenoviral vector expressing VEGF (AGV.VEGF) resulted in neovascularization of the cornea and iris, but no retinal neovascularization. After treatment with doxycycline to induce Ang2 expression, intravitreous injection of AGV.VEGF caused retinal neovascularization in addition to corneal and iris neovascularization. The retinal neovascularization originated from both the superficial and deep capillary beds. These data suggest that Ang2 promotes sensitivity to the angiogenic effects of VEGF in retinal vessels.  相似文献   

17.
Changing the logic of therapeutic angiogenesis for ischemic disease   总被引:1,自引:0,他引:1  
The worldwide epidemic of ischemic disease urgently requires innovative treatments. Recently, therapeutic angiogenesis has emerged as a noninvasive supply-side approach, aimed at promoting neovascularization in underperfused tissues through the local delivery of angiogenic growth factors. Successful preclinical studies paved the way for the first clinical trials, with single growth factors given as recombinant proteins or genes. However, clinical results have not matched the initial promises. Our opinion is that the logic of therapeutic angiogenesis needs profound revision. Here, we introduce the concept that pleiotropic agents can stimulate the healing of all the components of ischemic tissue. We also propose prophylactic interventions to delay vascular senescence. The optimization of therapeutic angiogenesis will open unprecedented opportunities for the care of life-threatening ischemic disease.  相似文献   

18.
Endothelial progenitor cells for regeneration   总被引:4,自引:0,他引:4  
Masuda H  Kalka C  Asahara T 《Human cell》2000,13(4):153-160
Endothelial progenitor cells (EPCs) have been recently isolated from peripheral blood and bone marrow (BM), and shown to be incorporated into sites of physiological and pathological neovascularization in vivo. In contrast to differentiated endothelial cells (ECs), transplantation of EPCs successfully enhanced vascular development by in situ differentiation and proliferation within ischemic organs. Based on such a novel concept of closed up function on EPCs in postnatal neovascularization, the beneficial property of EPC is attractive for cell therapy as well as cell-mediated gene therapy applications targeting regeneration of ischemic tissue.  相似文献   

19.
Abstract: Patients with diabetes are predisposed to microvascular disease. In the retina and brain, this is characterized by neovascularization and new capillary formation. Because of the potential importance of plasmin generation in these processes, we evaluated the effect of elevated glucose concentrations on expression of plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and urokinase (uPA) in cultured bovine brain endothelial cells (BBEC) versus cultured bovine aortic endothelial cells (BAEC). We observed that BBEC PAI-1 mRNA levels were decreased fivefold in cells cultured in media containing 20 m M glucose compared with BBEC cultured in media with 5.5 m M glucose, whereas expression of PAI-1 mRNA in BAEC, bovine mesenteric endothelial cells, and human umbilical vein endothelial cells was not modulated under these conditions. Expression of PAI-1 protein was also inhibited by growth of BBEC in elevated glucose, but the effect was less marked than at the mRNA level. Elevated glucose did not decrease expression of PAI-1 protein by BAEC. Withdrawal of acidic fibroblast growth factor enhanced expression of PAI-1 mRNA and protein in BBEC. Expression of tPA mRNA was not affected by the glucose concentration of the medium, and uPA mRNA was not detected in our BBEC cultures. A decrease in the local tissue activity of PAI-1 by elevated glucose concentrations, with no effect on tPA or uPA expression, would lead to an increase in the plasmin activity and thereby predispose neural tissues, such as the cerebrum and retina, of diabetic patients to neovascularization.  相似文献   

20.
It is known that the neural system plays a fundamental role in neovascularization. A neuropeptide, calcitonin gene-related peptide (CGRP), is widely distributed in the central and peripheral neuronal systems. However, it remains to be elucidated the role of CGRP in angiogenesis during ischemia. The present study examined whether endogenous CGRP released from neuronal systems facilitates revascularization in response to ischemia using CGRP knockout mice (CGRP-/-). CGRP-/- or their wild-type littermates (CGRP+/+) were subjected to unilateral hindlimb ischemia. CGRP-/- exhibited impaired blood flow recovery from ischemia and decreased capillary density expressed in terms of the number of CD-31-positive cells in the ischemic tissues compared with CGRP+/+. In vivo microscopic studies showed that the functional capillary density in CGRP-/- was reduced. Hindlimb ischemia increased the expression of pro-CGRP mRNA and of CGRP protein in the lumbar dorsal root ganglia. Lack of CGRP decreased mRNA expression of growth factors, including CD31, vascular endothelial growth factor-A, basic fibroblast growth factor, and transforming growth factor-β, in the ischemic limb tissue. The application of CGRP enhanced the mRNA expression of CD31 and VEGF-A in human umbilical vein endothelial cells (HUVECs) and fibroblasts. Subcutaneous infusion of CGRP8-37, a CGRP antagonist, using miniosmotic pumps delayed angiogenesis and reduced the expression of proangiogenic growth factors during hindlimb ischemia. These results indicate that endogenous CGRP facilitates angiogenesis in response to ischemia. Targeting CGRP may provide a promising approach for controlling angiogenesis related to pathophysiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号