首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrobaculum aerophilum, a hyperthermophilic archaeon, can respire either with low amounts of oxygen or anaerobically with nitrate as the electron acceptor. Under anaerobic growth conditions, nitrate is reduced via the denitrification pathway to molecular nitrogen. This study demonstrates that P. aerophilum requires the metal oxyanion WO42− for its anaerobic growth on yeast extract, peptone, and nitrate as carbon and energy sources. The addition of 1 μM MoO42− did not replace WO42− for the growth of P. aerophilum. However, cell growth was completely inhibited by the addition of 100 μM MoO42− to the culture medium. At lower tungstate concentrations (0.3 μM and less), nitrite was accumulated in the culture medium. The accumulation of nitrite was abolished at higher WO42− concentrations (<0.7 μM). High-temperature enzyme assays for the nitrate, nitrite, and nitric oxide reductases were performed. The majority of all three denitrification pathway enzyme activities was localized to the cytoplasmic membrane, suggesting their involvement in the energy metabolism of the cell. While nitrite and nitric oxide specific activities were relatively constant at different tungstate concentrations, the activity of nitrate reductase was decreased fourfold at WO42− levels of 0.7 μM or higher. The high specific activity of the nitrate reductase enzyme observed at low WO42− levels (0.3 μM or less) coincided with the accumulation of nitrite in the culture medium. This study documents the first example of the effect of tungstate on the denitrification process of an extremely thermophilic archaeon. We demonstrate here that nitrate reductase synthesis in P. aerophilum occurs in the presence of high concentrations of tungstate.  相似文献   

2.
Pyrobaculum islandicum uses iron, thiosulfate, and elemental sulfur for anaerobic respiration, while Pyrobaculum aerophilum uses iron and nitrate; however, the constraints on these processes and their physiological mechanisms for iron and sulfur reduction are not well understood. Growth rates on sulfur compounds are highest at pH 5 to 6 and highly reduced (<−420-mV) conditions, while growth rates on nitrate and iron are highest at pH 7 to 9 and more-oxidized (>−210-mV) conditions. Growth on iron expands the known pH range of growth for both organisms. P. islandicum differs from P. aerophilum in that it requires direct contact with insoluble iron oxide for growth, it did not produce any extracellular compounds when grown on insoluble iron, and it lacked 2,6-anthrahydroquinone disulfonate oxidase activity. Furthermore, iron reduction in P. islandicum appears to be completely independent of c-type cytochromes. Like that in P. aerophilum, NADH-dependent ferric reductase activity in P. islandicum increased significantly in iron-grown cultures relative to that in non-iron-grown cultures. Proteomic analyses showed that there were significant increases in the amounts of a putative membrane-bound thiosulfate reductase in P. islandicum cultures grown on thiosulfate relative to those in cultures grown on iron and elemental sulfur. This is the first evidence of this enzyme being used in either a hyperthermophile or an archaeon. Pyrobaculum arsenaticum and Pyrobaculum calidifontis also grew on Fe(III) citrate and insoluble iron oxide, but only P. arsenaticum could grow on insoluble iron without direct contact.  相似文献   

3.
4.
Short-chain alcohol dehydrogenase, encoded by the gene Tsib_0319 from the hyperthermophilic archaeon Thermococcus sibiricus, was expressed in Escherichia coli, purified and characterized as an NADPH-dependent enantioselective oxidoreductase with broad substrate specificity. The enzyme exhibits extremely high thermophilicity, thermostability, and tolerance to organic solvents and salts.Alcohol dehydrogenases (ADHs; EC 1.1.1.1.) catalyze the interconversion of alcohols to their corresponding aldehydes or ketones by using different redox-mediating cofactors. NAD(P)-dependent ADHs, due to their broad substrate specificity and enantioselectivity, have attracted particular attention as catalysts in industrial processes (5). However, mesophilic ADHs are unstable at high temperatures, sensitive to organic solvents, and often lose activity during immobilization. In this relation, there is a considerable interest in ADHs from extremophilic microorganisms; among them, Archaea are of great interest. The representatives of all groups of NAD(P)-dependent ADHs have been detected in genomes of Archaea (11, 12); however, only a few enzymes have been characterized, and the great majority of them belong to medium-chain (3, 4, 14, 16, 19) or long-chain iron-activated ADHs (1, 8, 9). Up to now, a single short-chain archaeal ADH from Pyrococcus furiosus (10, 18) and only one archaeal aldo-keto reductase also from P. furiosus (11) have been characterized.Thermococcus sibiricus is a hyperthermophilic anaerobic archaeon isolated from a high-temperature oil reservoir capable of growth on complex organic substrates (15). The complete genome sequence of T. sibiricus has been recently determined and annotated (13). Several ADHs are encoded by the T. sibiricus genome, including three short-chain ADHs (Tsib_0319, Tsib_0703, and Tsib_1998) (13). In this report, we describe the cloning and expression of the Tsib_0319 gene from T. sibiricus and the purification and the biochemical characterization of its product, the thermostable short-chain ADH (TsAdh319).The Tsib_0319 gene encodes a protein with a size of 234 amino acids and the calculated molecular mass of 26.2 kDa. TsAdh319 has an 85% degree of sequence identity with short-chain ADH from P. furiosus (AdhA; PF_0074) (18). Besides AdhA, close homologs of TsAdh319 were found among different bacterial ADHs, but not archaeal ADHs. The gene flanked by the XhoI and BamHI sites was PCR amplified using two primers (sense primer, 5′-GTTCTCGAGATGAAGGTTGCTGTGATAACAGGG-3′, and antisense primer, 5′-GCTGGATCCTCAGTATTCTGGTCTCTGGTAGACGG-3′) and cloned into the pET-15b vector. TsAdh319 was overexpressed, with an N-terminal His6 tag in Escherichia coli Rosetta-gami (DE3) and purified to homogeneity by metallochelating chromatography (Hi-Trap chelating HP column; GE Healthcare) followed by gel filtration on Superdex 200 10/300 GL column (GE Healthcare) equilibrated in 50 mM Tris-HCl (pH 7.5) with 200 mM NaCl. The homogeneity and the correspondence to the calculated molecular mass of 28.7 kDa were verified by SDS-PAGE (7). The molecular mass of native TsAdh319 was 56 to 60 kDa, which confirmed the dimeric structure in solution.The standard ADH activity measurement was made spectrophotometrically at the optimal pH by following either the reduction of NADP (in 50 mM Gly-NaOH buffer; pH 10.5) or the oxidation of NADPH (in 0.1 M sodium phosphate buffer; pH 7.5) at 340 nm at 60°C. The enzyme exhibited a strong preference for NADP(H) and broad substrate specificity (Table (Table1).1). The highest oxidation rates were found with pentoses d-arabinose (2.0 U mg−1) and d-xylose (2.46 U mg−1), and the highest reduction rates were found with dimethylglyoxal (5.9 U mg−1) and pyruvaldehyde (2.2 U mg−1). The enzyme did not reduce sugars which were good substrates for the oxidation reaction. The kinetic parameters of TsAdh319 determined for the preferred substrates are shown in Table Table2.2. The enantioselectivity of the enzyme was estimated by measuring the conversion rates of 2-butanol enantiomers. TsAdh319 showed an evident preference, >2-fold, for (S)-2-butanol over (RS)-2-butanol. The enzyme stereoselectivity is confirmed by the preferred oxidation of d-arabinose over l-arabinose (Table (Table1).1). The fact that TsAdh319 is metal independent was supported by the absence of a significant effect of TsAdh319 preincubation with 10 mM Me2+ for 30 min before measuring the activity in the presence of 1 mM Me2+ or EDTA (Table (Table3).3). TsAdh319 also exhibited a halophilic property, so the enzyme activity increased in the presence of NaCl and KCl and the activation was maintained even at concentration of 4 M and 3 M, respectively (Table (Table33).

TABLE 1.

Substrate specificity of TsAdh319
SubstrateaRelative activity (%)
Oxidation reactionb
    Methanol0
    2-Methoxyethanol0
    Ethanol36
    1-Butanol80
    2-Propanol100
    (RS)-(±)-2-Butanol86
    (S)-(+)-2-Butanol196
    2-Pentanol67
    1-Phenylmethanol180
    1.3-Butanediol91
    Ethyleneglycol0
    Glycerol16
    d-Arabinose*200
    l-Arabinose*17
    d-Xylose*246
    d-Ribose*35
    d-Glucose*146
    d-Mannose*48
    d-Galactose*0
    Cellobiose*71
Reduction reactionc
    Pyruvaldehyde100
    Dimethylglyoxal270
    Glyoxylic acid36
    Acetone0
    Cyclopentanone0
    Cyclohexanone4
    3-Methyl-2-pentanone*13
    d-Arabinose*0
    d-Xylose*0
    d-Glucose*0
    Cellobiose*0
Open in a separate windowaSubstrates were present in 250 mM or 50 mM (*) concentrations.bRelative rates, measured under standard conditions, were calculated by defining the activity for 2-propanol as 100%, which corresponds to 1.0 U mg−1. Data are averages from triplicate experiments.cRelative rates, measured under standard conditions, were calculated by defining the activity for pyruvaldehyde as 100%, which corresponds to 2.2 U mg−1. Data are averages from triplicate experiments.

TABLE 2.

Apparent Km and Vmax values for TsAdh319
Coenzyme or substrateApparent Km (mM)Vmax (U mg−1)kcat (s−1)
NADPa0.022 ± 0.0020.94 ± 0.020.45 ± 0.01
NADPHb0.020 ± 0.0033.16 ± 0.111.51 ± 0.05
2-Propanol168 ± 291.10 ± 0.090.53 ± 0.04
d-Xylose54.4 ± 7.41.47 ± 0.090.70 ± 0.04
Pyruvaldehyde17.75 ± 3.384.26 ± 0.402.04 ± 0.19
Open in a separate windowaActivity was measured under standard conditions with 2-propanol. Data are averages from triplicate experiments.bActivity was measured under standard conditions with pyruvaldehyde. Data are averages from triplicate experiments.

TABLE 3.

Effect of various ions and EDTA on TsAdh319a
CompoundConcn (mM)Relative activity (%)
None0100
NaCl400206
600227
4,000230
KCl600147
2,000200
3,000194
MgCl21078
CoCl210105
NiSO410100
ZnSO41079
FeSO41074
EDTA1100
580
Open in a separate windowaThe activity was measured under standard conditions with 2-propanol; relative rates were calculated by defining the activity without salts as 100%, which corresponds to 0.9 U mg−1. Data are averages from duplicate experiments.The most essential distinctions of TsAdh319 are the thermophilicity and high thermostability of the enzyme. The optimum temperature for the 2-propanol oxidation catalyzed by TsAdh319 was not achieved. The initial reaction rate of oxidation increased up to 100°C (Fig. (Fig.1).1). The Arrhenius plot is a straight line, typical of a single rate-limited thermally activated process, but there is no obvious transition point due to the temperature-dependent conformational changes of the protein molecule. The activation energy for the oxidation of 2-propanol was estimated at 84.0 ± 5.8 kJ·mol−1. The thermostability of TsAdh319 was calculated from residual TsAdh319 activity after preincubation of 0.4 mg/ml enzyme solution in 50 mM Tris-HCl buffer (pH 7.5) containing 200 mM NaCl at 70, 80, 90, or 100°C. The preincubation at 70°C or 80°C for 1.5 h did not cause a decrease in the TsAdh319 activity, but provoked slight activation. The residual TsAdh319 activities began to decrease after 2 h of preincubation at 70°C or 80°C and were 10% and 15% down from the control, respectively. The determined half-life values of TsAdh319 were 2 h at 90°C and 1 h at 100°C.Open in a separate windowFIG. 1.Temperature dependence of the initial rate of the 2-propanol reduction by TsAdh319. The reaction was initiated by enzyme addition to a prewarmed 2-propanol-NADP mixture. The inset shows the Arrhenius plot of the same data.Protein thermostability often correlates with such important biotechnological properties as increased solvent tolerance (2). We tested the influence of organic solvents at a high concentration (50% [vol/vol]) on TsAdh319 by using either preincubation of the enzyme at a concentration of 0.2 mg/ml with solvents for 4 h at 55°C or solvent addition into the reaction mixture to distinguish the effect of solvent on the protein stability and on the enzyme activity. TsAdh319 showed significant solvent tolerance in both cases (Table (Table4),4), and the effects of solvents could be modulated by salts, acting apparently as molecular lyoprotectants (17). Furthermore, TsAdh319 maintained 57% of its activity in 25% (vol/vol) 2-propanol, which could be used as the cosubstrate in cofactor regeneration (6).

TABLE 4.

Influence of various solvents on TsAdh319 activitya
SolventRelative activity (%)bRelative activity (%)c
Buffer without NaClBuffer with 600 mM NaCl
None100100100
DMSOd98040
DMFAe1011341
Methanol98259
Acetonitrile9500
Ethyl acetate470*33*
Chloroform10579*81*
n-Hexane10560*118*
n-Decane3691*107*
Open in a separate windowaThe activity measured at the standard condition with 2-propanol as a substrate. Data are averages from triplicate experiments.bPreincubation for 4 h at 55°C in the presence of 50% (vol/vol) of solvent prior the activity assay.cWithout preincubation, solvent addition to the reaction mixture up to 50% (vol/vol) or using the buffer saturated by a solvent (*).dDMSO, dimethyl sulfoxide.eDMFA, dimethylformamide.From all the aforesaid we may suppose TsAdh319 or its improved variant to be interesting both for the investigation of structural features of protein tolerance and for biotechnological applications.  相似文献   

5.
 Superoxide dismutase (SOD) from the hyperthermophilic archaeon Pyrobaculum aerophilum (a facultative aerobe) has been cloned and expressed in a mesophilic host (Escherichia coli) as a soluble tetrameric apoprotein. The purified apoprotein can be reconstituted with either Mn or Fe by heating the protein with the appropriate metal salt at an elevated temperature (95  °C). Both Mn- and Fe-reconstituted P. aerophilum SOD exhibit superoxide dismutase activity, with the Mn-containing enzyme having the higher activity. P. aerophilum SOD is extremely thermostable and the reconstitution with Mn(II) can be performed in an autoclave (122  °C, 18 psi). The Mn(III) optical absorption spectrum of Mn-reconstituted P. aerophilum SOD is distinct from that of most other MnSODs and is unchanged upon addition of NaN3. The optical absorption spectrum of Fe-reconstituted P. aerophilum SOD is typical of Fe-substituted MnSODs and authentic FeSOD and exhibits a pH-dependent transition with an effective pK a value higher than that found for Fe-substituted MnSOD from either E. coli or Thermus spp. Amino acid sequence analysis shows that the P. aerophilum SOD is closely related to SODs from other hyperthermophilic archaea (Aeropyrum pernix and Sulfolobus spp.), forming a family of enzymes distinct from the hyperthermophilic bacterial SOD from Aquifex pyrophilus and from mesophilic SODs. Received: 2 February 2000 / Accepted: 29 March 2000  相似文献   

6.
The extremely thermophilic anaerobic archaeon strain B1001 was isolated from a hot-spring environment in Japan. The cells were irregular cocci, 0.5 to 1.0 μm in diameter. The new isolate grew at temperatures between 60 and 95°C (optimum, 85°C), from pH 5.0 to 9.0 (optimum, pH 7.0), and from 1.0 to 6.0% NaCl (optimum, 2.0%). The G+C content of the genomic DNA was 43.0 mol%. The 16S rRNA gene sequencing of strain B1001 indicated that it belongs to the genus Thermococcus. During growth on starch, the strain produced a thermostable cyclomaltodextrin glucanotransferase (CGTase). The enzyme was purified 1,750-fold, and the molecular mass was determined to be 83 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Incubation at 120°C with SDS and 2-mercaptoethanol was required for complete unfolding. The optimum temperatures for starch-degrading activity and cyclodextrin synthesis activity were 110 and 90 to 100°C, respectively. The optimum pH for enzyme activity was pH 5.0 to 5.5. At pH 5.0, the half-life of the enzyme was 40 min at 110°C. The enzyme formed mainly α-cyclodextrin with small amounts of β- and γ-cyclodextrins from starch. This is the first report on the presence of the extremely thermostable CGTase from hyperthermophilic archaea.  相似文献   

7.
We have found that the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 produced a thermostable esterase. We isolated and sequenced the esterase gene (estPc) from strain VA1. estPc consisted of 939 bp, corresponding to 313 amino acid residues with a molecular mass of 34,354 Da. As estPc showed significant identity (30%) to mammalian hormone-sensitive lipases (HSLs), esterase of P. calidifontis (Est) could be regarded as a new member of the HSL family. Activity levels of the enzyme were comparable or higher than those of previously reported enzymes not only at high temperature (6,410 U/mg at 90°C), but also at ambient temperature (1,050 U/mg at 30°C). The enzyme displayed extremely high thermostability and was also stable after incubation with various water-miscible organic solvents at a concentration of 80%. The enzyme also exhibited activity in the presence of organic solvents. Est of P. calidifontis showed higher hydrolytic activity towards esters with short to medium chains, with p-nitrophenyl caproate (C6) the best substrate among the p-nitrophenyl esters examined. As for the alcoholic moiety, the enzyme displayed esterase activity towards esters with both straight- and branched-chain alcohols. Most surprisingly, we found that this Est enzyme hydrolyzed the tertiary alcohol ester tert-butyl acetate, a feature very rare among previously reported lipolytic enzymes. The extreme stability against heat and organic solvents, along with its activity towards a tertiary alcohol ester, indicates a high potential for the Est of P. calidifontis in future applications.  相似文献   

8.
Serpins are metastable proteinase inhibitors. Serpin metastability drives both a large conformational change that is utilized during proteinase inhibition and confers an inherent structural flexibility that renders serpins susceptible to aggregation under certain conditions. These include point mutations (the basis of a number of important human genetic diseases), small changes in pH, and an increase in temperature. Many studies of serpins from mesophilic organisms have highlighted an inverse relationship: mutations that confer a marked increase in serpin stability compromise inhibitory activity. Here we present the first biophysical characterization of a metastable serpin from a hyperthermophilic organism. Aeropin, from the archaeon Pyrobaculum aerophilum, is both highly stable and an efficient proteinase inhibitor. We also demonstrate that because of high kinetic barriers, aeropin does not readily form the partially unfolded precursor to serpin aggregation. We conclude that stability and activity are not mutually exclusive properties in the context of the serpin fold, and propose that the increased stability of aeropin is caused by an unfolding pathway that minimizes the formation of an aggregation-prone intermediate ensemble, thereby enabling aeropin to bypass the misfolding fate observed with other serpins.  相似文献   

9.
Pyrimidine adducts in cellular DNA arise from modification of the pyrimidine 5,6-double bond by oxidation, reduction or hydration. The biological outcome includes increased mutation rate and potential lethality. A major DNA N-glycosylase responsible for the excision of modified pyrimidine bases is the base excision repair (BER) glycosylase endonuclease III, for which functional homologs have been identified and characterized in Escherichia coli, yeast and humans. So far, little is known about how hyperthermophilic Archaea cope with such pyrimidine damage. Here we report characterization of an endonuclease III homolog, PaNth, from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100°C. The predicted product of 223 amino acids shares significant sequence homology with several [4Fe-4S]-containing DNA N-glycosylases including E.coli endonuclease III (EcNth). The histidine-tagged recombinant protein was expressed in E.coli and purified. Under optimal conditions of 80–160 mM NaCl and 70°C, PaNth displays DNA glycosylase/β-lyase activity with the modified pyrimidine base 5,6-dihydrothymine (DHT). This activity is enhanced when DHT is paired with G. Our data, showing the structural and functional similarity between PaNth and EcNth, suggests that BER of modified pyrimidines may be a conserved repair mechanism in Archaea. Conserved amino acid residues are identified for five subfamilies of endonuclease III/UV endonuclease homologs clustered by phylogenetic analysis.  相似文献   

10.
A hyperthermophilic archaeon, Thermococcus profundus DT5432, produced extracellular thermostable amylases. One of the amylases (amylase S) was purified to homogeneity by ammonium sulfate precipitation, DEAE-Toyopearl chromatography, and gel filtration on Superdex 200HR. The molecular weight of the enzyme was estimated to be 42,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amylase exhibited maximal activity at pH 5.5 to 6.0 and was stable in the range of pH 5.9 to 9.8. The optimum temperature for the activity was 80(deg)C. Half-life of the enzyme was 3 h at 80(deg)C and 15 min at 90(deg)C. Thermostability of the enzyme was enhanced in the presence of 5 mM Ca(sup2+) or 0.5% soluble starch at temperatures above 80(deg)C. The enzyme activity was inhibited in the presence of 5 mM iodoacetic acid or 1 mM N-bromosuccinimide, suggesting that cysteine and tryptophan residues play an important role in the catalytic action. The amylase hydrolyzed soluble starch, amylose, amylopectin, and glycogen to produce maltose and maltotriose of (alpha)-configuration as the main products. Smaller amounts of larger maltooligosaccharides were also produced with a trace amount of glucose. Pullulan; (alpha)-, (beta)-, and (gamma)-cyclodextrins; maltose; and maltotriose were not hydrolyzed.  相似文献   

11.
12.
13.
A 640-kDa proteasome consisting of (alpha) (25-kDa) and (beta) (22-kDa) subunits, and with a temperature optimum of 95(deg)C, was purified from crude cell extracts of a hyperthermophilic archaeon, Pyrococcus furiosus. Although this is the fourth member of the kingdom Euryarchaeota (and the first hyperthermophile) found to contain a proteasome, none has been identified among the members of the kingdom Crenarchaeota.  相似文献   

14.
Nucleoside diphosphate (NDP) kinases are ubiquitous enzymes that transfer gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates via a ping-pong mechanism. The important role of this large family of enzymes in controlling cellular functions and developmental processes along with their crystallizability has made them good candidates for structural studies. We recently determined the structure of an evolved version of an NDP kinase from Pyrobaculum aerophilum, an extreme thermophile. This NDP kinase has similarity to the 42 other NDP kinases deposited in the Protein Data Bank (PDB) but differs significantly in sequence, structure, and biophysical properties. The P. aerophilum NDP kinase sequence contains two unique segments not present in other NDP kinases, comprising residues 66-100 and 156-165. We show that deletion mutants of the P. aerophilum NDP kinase lacking either or both of these inserts have an altered substrate specificity, allowing dGTP as the phosphate donor. A structural analysis of the evolved NDP kinase in conjunction with mutagenesis experiments suggests that the substrate specificity of the P. aerophilum NDP kinase is related to the presence of these two inserts.  相似文献   

15.
极端嗜热古菌———芝田硫化叶菌 DNA 连接酶 (Ssh 连接酶 ) 的最适辅因子为 ATP ,在 dATP 存在时,该酶也能表现出较弱的连接活性 . ATP 或 dATP 都能够使该酶发生腺苷化,腺苷化的 Ssh 连接酶能够将腺苷基团转移至含切刻的 DNA 上 . 电泳迁移率改变实验表明, Ssh 连接酶能够结合双链 DNA ,且与含切刻及不含切刻的 DNA 结合的亲和力相同,但不结合单链 DNA. 酵母双杂交实验显示,硫磺矿硫化叶菌 ( 与芝田硫化叶菌亲缘关系很近 ) 的 DNA 连接酶,与该菌所含的 3 个增殖细胞核抗原 (PCNA) 同源蛋白中的一个 (PCNA-1) 有相互作用,而与另外 2 个同源蛋白 (PCNA-like 和 PCNA-2) 则无相互作用 . 在古菌中高度保守的 Sac10b 蛋白家族成员 Ssh10b 能够激活 Ssh 连接酶的活性,而硫化叶菌中的主要染色体蛋白——— 7 ku DNA 结合蛋白 (Ssh7) 则对该酶活性没有影响 .  相似文献   

16.
In all organisms studied to date, 8-oxoguanine (GO), an important oxidation product of guanine, is removed by highly conserved GO DNA glycosylases. The hyperthermophilic crenarchaeon Pyrobaculum aerophilum encodes a GO DNA glycosylase, Pa-AGOG (Archaeal GO DNA glycosylase) which has become the founding member of a new family within the HhH-GPD superfamily of DNA glycosylases based on unique structural and functional characteristics. In this study, we made quantitative measurements of the DNA glycosylase activity of Pa-AGOG wild type and some engineered variants under single turnover conditions. The mutagenesis study includes residues Trp222 (W222A and W222F), Trp69 (W69F), Gln31 (Q31S) and Lys147 (K147Q) all of which are involved in GO recognition and Asp172 (D172N and D172Q) and Lys140 (K140Q) that are involved in catalysis. Pa-AGOG prefers GO/G mispairs for both base excision and base excision/β-lyase activities. The mutagenesis studies show that base-stacking between GO and Trp222 is very important for recognition. The contact between Trp69 and the 8-oxo group was found to be dispensable, while that to N7 by Gln31 is indispensable for GO recognition. In contrast to human OGG1 the catalytic mutant, D172Q did not show detectable glycosylase activity. Pa-AGOG mutants K140Q, D172N and D172Q did bind GO containing single-stranded DNA more tightly than double-stranded DNA containing a GO/C base pair. Our studies confirm and extend the unique characteristics of Pa-AGOG, which distinguish it from other mesophilic and thermostable GO DNA glycosylases.  相似文献   

17.
Several representatives of the Crenarchaeal branch of the Archaea contain highly abundant, small, positively charged proteins exemplified by the Sso7d protein from Sulfolobus solfataricus. These proteins bind to DNA in a non-sequence-specific manner. Using publicly available genomic sequence information, we identified a second class of small Crenarchaeal DNA-binding proteins represented by the Pyrobaculum aerophilum open reading frame 3192–encoded (Pae3192) protein and its paralogs. We investigated the biochemical properties of the Pae3192 protein and an orthologous protein (Ape1322b) from Aeropyrum pernix in side-by-side experiments with the Sso7d protein. We demonstrate that the recombinant Ape1322b, Pae3192 and Sso7d proteins bind to DNA and that the DNA-protein complexes formed are slightly different for each protein. We show that like Sso7d, Pae3192 constrains negative supercoils in DNA. In addition, we show that all three proteins raise the melting temperature of duplex DNA upon binding. Finally, we present the equilibrium affinity constants and kinetic association constants of each protein for single-stranded and double-stranded DNA.  相似文献   

18.
AMP-forming acetyl-CoA synthetases (ACSs) are ubiquitous in all three domains of life. Here, we report the first characterization of an ACS from a hyperthermophilic organism, from the archaeon Pyrobaculum aerophilum. The recombinant ACS, the gene product of ORF PAE2867, showed extremely high thermostability and thermoactivity at temperatures around 100 degrees C. In contrast to known monomeric or homodimeric mesophilic ACSs, the P. aerophilum ACS was a 610 kDa homooctameric protein, with a significant lower content of thermolabile (Cys, Asn, and Gln) and higher content of charged (Glu, Lys, and Arg) amino acids. Kinetic analyses revealed an unusual broad substrate spectrum for organic acids and an extremely high affinity for acetate (K(m) 3 microM).  相似文献   

19.
We have cloned the gene encoding RNase HII (RNase HIIPk) from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 by screening of a library for clones that suppressed the temperature-sensitive growth phenotype of an rnh mutant strain of Escherichia coli. This gene was expressed in an rnh mutant strain of E. coli, the recombinant enzyme was purified, and its biochemical properties were compared with those of E. coli RNases HI and HII. RNase HIIPk is composed of 228 amino acid residues (molecular weight, 25,799) and acts as a monomer. Its amino acid sequence showed little similarity to those of enzymes that are members of the RNase HI family of proteins but showed 40, 31, and 25% identities to those of Methanococcus jannaschii, Saccharomyces cerevisiae, and E. coli RNase HII proteins, respectively. The enzymatic activity was determined at 30°C and pH 8.0 by use of an M13 DNA-RNA hybrid as a substrate. Under these conditions, the most preferred metal ions were Co2+ for RNase HIIPk, Mn2+ for E. coli RNase HII, and Mg2+ for E. coli RNase HI. The specific activity of RNase HIIPk determined in the presence of the most preferred metal ion was 6.8-fold higher than that of E. coli RNase HII and 4.5-fold lower than that of E. coli RNase HI. Like E. coli RNase HI, RNase HIIPk and E. coli RNase HII cleave the RNA strand of an RNA-DNA hybrid endonucleolytically at the P-O3′ bond. In addition, these enzymes cleave oligomeric substrates in a similar manner. These results suggest that RNase HIIPk and E. coli RNases HI and HII are structurally and functionally related to one another.  相似文献   

20.
The crenarchaeon Pyrobaculum aerophilum is with an optimalgrowth temperature of 100 °C one of the most thermophilic organisms knownto possess an aerobic respiratory chain. The analysis of DNA sequences fromthe Pyrobaculum genome project lead to the identification of an openreading frame potentially coding for a Rieske iron-sulfur protein. Thecomplete gene (named parR) was cloned and sequenced. The deducedamino acid sequence displays unusual amino acid exchanges and a so farunknown sequence insertion. The N-terminus shows similarities to bacterialsignal sequences. Several forms of the gene were expressed in E.coli in order to verify the classification as a Rieske protein and tofacilitate biophysical studies. Soluble, thermo-stable proteins withcorrectly inserted iron-sulfur clusters were expressed from two versions ofthe gene. The 1–23 truncated holo-protein is redox active. Itdisplays the typical spectroscopic properties of a Rieske protein. The redoxpotential was determined to be +215 mV at pH 6.5 and is pH dependentabove pH 7.5 revealing the influence of two protonation equilibria with pKavalues of 8.1 and 9.8. Phylogenetic analysis demonstrates that the parRprotein clusters together with the two other available archaeal Rieskesequences from Sulfolobus on a separate branch of the phylogenetictree apart from the proteins from thermophilic bacteria like Aquifexand Thermus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号