首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The process of naphthalene degradation by indigenous, introduced, and transconjugant strains was studied in laboratory soil microcosms. Conjugation transfer of catabolic plasmids was demonstrated in naphthalene-contaminated soil. Both indigenous microorganisms and an introduced laboratory strain BS394 (pNF142::TnMod-OTc) served as donors of these plasmids. The indigenous bacterial degraders of naphthalene isolated from soil were identified as Pseudomonas putida and Pseudomonas fluorescens. The frequency of plasmid transfer in soil was 10?5–10?4 per donor cell. The activity of the key enzymes of naphthalene biodegradation in indigenous and transconjugant strains was studied. Transconjugant strains harboring indigenous catabolic plasmids possessed high salicylate hydroxylase and low catechol-2,3-dioxygenase activities, in contrast to indigenous degraders, which had a high level of catechol-2,3-dioxygenase activity and a low level of salicylate hydroxylase. Naphthalene degradation in batch culture in liquid mineral medium was shown to accelerate due to cooperation of the indigenous naphthalene degrader P. fluorescens AP1 and the transconjugant strain P. putida KT2442 harboring the indigenous catabolic plasmid pAP35. The role of conjugative transfer of naphthalene biodegradation plasmids in acceleration of naphthalene degradation was demonstrated in laboratory soil microcosms.  相似文献   

2.
Aerobic biodegradation of benzene, toluene andnaphthalene was studied in pre-equilibrated soil-waterslurry microcosms. The experiments were designed tosimulate biodegradation at waste sites where sorptionreaches equilibrium before biodegradation becomesimportant. Rates of biodegradation were reduced by thepresence of soil. For example, nearly completenaphthalene biodegradation (1.28 mg/L) by indigenoussoil bacteria occurred within 60 hours in aqueoussolution (soil-free) while it took two weeks todegrade the same amount in the presence of 0.47 kgsoil/L of water. The rate of biodegradation wasobserved to decrease with increasing organic compoundhydrophobicity, soil/water ratio, soil particle size,and soil organic carbon content. These resultsclearly indicate that the rate of biodegradation isaffected by both the extent and rate of sorption. Further analysis suggests that mass transfer couldcontrol the performance of in situ bioremediation forhighly hydrophobic organic contaminants which exhibita large extent of sorption and slow rate ofdesorption.  相似文献   

3.
The scope of this study included the biodegradation performance and the rate of oxygen transfer in a pilot-scale immobilized soil bioreactor system (ISBR) of 10-L working volume. The ISBR was inoculated with an acclimatized population of contaminant degrading microorganisms. Immobilization of microorganisms on a non-woven polyester textile developed the active biofilm, thereby obtaining biodegradation rates of 81 mg/L x h and 40 mg/L x h for p-xylene and naphthalene, respectively. Monod kinetic model was found to be suitable to correlate the experimental data obtained during the course of batch and continuous operations. Oxygen uptake and transfer rates were determined during the batch biodegradation process. The dynamic gassing-out method was used to determine the oxygen uptake rate (OUR) and volumetric oxygen mass transfer, K(L) a. The maximum volumetric OUR of 255 mg O(2)/L x h occurred approximately at 720-722 h after inoculation, when the dry weight of biomass concentration was 0.67 g/L.  相似文献   

4.
Most Trichloroethylene (TCE) biodegradation reports refer to methanogenic conditions, however, in this work, enhanced sulfidogenesis and TCE biodegradation were achieved in an upflow anaerobic sludge blanket (UASB) reactor in which a completely sulfidogenic sludge, from hydrothermal vents sediments, was developed. The work was divided in three stages, (i) sludge development and sulfate reducing activity (SRA) evaluation, (ii) TCE biodegradation and (iii) SRA evaluation after TCE biodegradation. For (i) SR was 98 ± 0.1%, 84% as sulfide (H2S, 1200 ± 28 mg/L), sulfate reducing activity (SRA) was 188 ± 50 mg COD H2S/g VSS*d. For (ii) The reactor reached 74% of TCE removal, concentrations of vinyl chloride of 16 ± 0.3 μM (5% of the TCE added) and ethene 202 ± 81 μM (67% of the TCE added), SRA of 161 ± 7 mg COD H2S/g VSS*d, 68% of sulfide (H2S) production and 93% of COD removal. For (iii) SRA was of 248 ± 22 mg COD H2S/g VSS*d demonstrating no adverse effects due to TCE.Among the genera of the microorganisms identified in the sludge during TCE biodegradation were: Dehalobacter, Desulfotomaculum, Sulfospirillum, Desulfitobacterium, Desulfovibrio and Clostridium. To the best of our knowledge, this is the first report using a sulfidogenic UASB reactor to biodegrade TCE. The overall conclusions of this work are that the reactor is efficient on both, sulfate and TCE biodegradation and it could be used to decontaminate wastewater containing organic solvents and relatively high concentrations of sulfate.  相似文献   

5.
Aim: To determine optimal environmental conditions for achieving biodegradation of α‐ and β‐endosulfan in soil slurries following inoculation with an endosulfan degrading strain of Pseudomonas aeruginosa. Methods and Results: Parameters that were investigated included soil texture, soil slurry: water ratios, initial inoculum size, pH, incubation temperature, aeration, and the use of exogenous sources of organic and amino acids. The results showed that endosulfan degradation was most effectively achieved at an initial inoculum size of 600 μl (OD = 0·86), incubation temperature of 30°C, in aerated slurries at pH 8, in loam soil. Under these conditions, the bacterium removed more than 85% of spiked α‐ and β‐endosulfan (100 mg l?1) after 16 days. Abiotic degradation in noninoculated control medium within same incubation period was about 16%. Biodegradation of endosulfan varied in different textured soils, being more rapid in course textured soil than in fine textured soil. Increasing the soil contents in the slurry above 15% resulted in less biodegradation of endosulfan. Exogenous application of organic acids (citric acid and acetic acid) and amino acids (l ‐methionine and l ‐cystein) had stimulatory and inhibitory effects, respectively, on biodegradation of endosulfan. Conclusion: The results of this study demonstrated that biodegradation of endosulfan by Ps. aeruginosa in soil sediments enhanced significantly under optimized environmental conditions. Significance and Impact of the Study: Endosulfan is a commonly used pesticide that can contaminate soil, wetlands and groundwater. Our study demonstrates that bioaugmentation of contaminated soils with an endosulfan degrading bacterium under optimized conditions provides an effective bioremediation strategy.  相似文献   

6.
The effect of microbial inoculation on the mineralization of naphthalene in a bioslurry treatment was evaluated in soil slurry microcosms. Inoculation by Pseudomonas putida G7 carrying the naphthalene dioxygenase (nahA) gene resulted in rapid mineralization of naphthalene, whereas indigenous microorganisms in the PAH-contaminated soil required a 28 h adaptation period before significant mineralization occurred. The number of nahA-like gene copies increased in both the inoculated and non-inoculated soil as mineralization proceeded, indicating selection towards naphthalene dioxygenase producing bacteria in the microbial community. In addition, 16S rRNA analysis by denaturing gradient gel electrophoresis (DGGE) analysis showed that significant selection occurred in the microbial community as a result of biodegradation. However, the indigenous soil bacteria were not able to compete with the P. putida G7 inoculum adapted to naphthalene biodegradation, even though the soil microbial community slightly suppressed naphthalene mineralization by P. putida G7.  相似文献   

7.
Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.  相似文献   

8.
Gibberellic acid (29 or 290 M) injected into drip irrigation lines significantly stimulated internode elongation of dwarf peas, and the 290-M soil treatment produced significantly taller plants than did the 29-M treatment. GA3 uptake may limit GA-induced internode elongation when GA3 is applied to soil, in contrast to results obtained for hydroponically grown plants, where uptake initially appeared to exceed the rate of hormone metabolism (andersonet al.). It is likely that biodegradation or chemical inactivation limited the plant-availability of GA3 in the soil. Degradation of moderate GA3 concentrations in a moist, aerobic loamy fine sand was nearly complete within five days, indicating that the inefficiency of soil applications may outweight the benefits provided by reducing labor costs associated with foliar-spray applications.  相似文献   

9.
In a continuous flow bioreactor seeded with microbes from municipal activated sludge, complete organic carbon oxidation of simulated graywater (wastewater produced in human residences, excluding toilet wastes) was achieved at dilution rates up to 0.36 h−1 in the presence of 64.1 μ M linear alkylbenzenesulfonate (LAS) L−1. At LAS concentrations of 187 μ M, the system functioned only at dilution rates up to 0.23 h−1, and the biomass yield was two-fold lower. There were physiological changes in the microbial communities under different operating conditions, as measured by specific contents of ATP and extracellular hydrolases as well as the respiratory potential of the biomass. LAS inhibited the activity of LAS-degrading microbes at >150  μ M LAS, and the activity of other microbes at >75 μ M LAS. Chemical analysis of graywater indicated that samples consisted primarily of biological polymers (proteins and polysaccharides) and lower concentrations of surfactants. Biological remediation of graywater is possible, although treatment efficiency is influenced by the operating conditions and wastestream composition. Received 08 July 1996/ Accepted in revised form 14 November 1996  相似文献   

10.
A consortium consisting of a Chlorella sorokiniana strain and a Ralstonia basilensis strain was able to carry out sodium salicylate biodegradation in a continuous stirred tank reactor (CSTR) using exclusively photosynthetic oxygenation. Salicylate biodegradation depended on algal activity, which itself was a function of microalgal concentration, light intensity, and temperature. Biomass recirculation improved the photobioreactor performance by up to 44% but the results showed the existence of an optimal biomass concentration above which dark respiration started to occur and the process efficiency started to decline. The salicylate removal efficiency increased by a factor of 3 when illumination was increased from 50-300 microE/m2.s. In addition, the removal rate of sodium salicylate was shown to be temperature-dependent, increasing from 14 to 27 mg/l.h when the temperature was raised from 26.5 to 31.5 degrees C. Under optimized conditions (300 microE/m2.s, 30 degrees C, 1 g sodium salicylate/l in the feed and biomass recirculation) sodium salicylate was removed at a maximum constant rate of 87 mg/l.h, corresponding to an estimated oxygenation capacity of 77 mg O2/l.h (based on a BOD value of 0.88 g O2/g sodium salicylate for the tested bacterium), which is in the range of the oxygen transfer capacity of large-scale mechanical surface aerators. Thus, although higher degradation rates were attained in the control reactor, the photobioreactor is a cost-efficient process which reduces the cost of aeration and prevents volatilization problems associated with the degradation of toxic volatile organic compounds under aerobic conditions.  相似文献   

11.
Using a successive transfer method on mineral salt medium containing simazine, a microbial community enriched with microorganisms able to grow on simazine was obtained. Afterwards, using a continuous enrichment culture procedure, a bacterial community able to degrade simazine from an herbicide formulation was isolated from a chemostat. The continuous selector, fed with a mineral salt medium containing simazine and adjuvants present in the commercial herbicide formulation, was maintained in operation for 42 days. Following the lapse of this time, the cell count increased from 5 x 10(5) to 3 x 10(8) CFU mL(-1), and the simazine removal efficiency reached 96%. The chemostat's bacterial diversity was periodically evaluated by extracting the culture's bacterial DNA, amplifying their 16S rDNA fragments and analyzing them by thermal gradient gel electrophoresis. Finally, a stable bacterial consortium able to degrade simazine was selected. By PCR amplification, sequencing of bacterial 16S rDNA amplicons, and comparison with known sequences of 16S rDNA from the NCBI GenBank, eight bacterial strains were identified. The genera, Ochrobactrum, Mycobacterium, Cellulomonas, Arthrobacter, Microbacterium, Rhizobium and Pseudomonas have been reported as common degraders of triazinic herbicides. On the contrary, we were unable to find reports about the ability of the genus Pseudonocardia to degrade triazinic compounds. The selected bacterial community was attached to a porous support in a concurrently aerated four-stage packed-bed reactor fed with the herbicide. Highest overall simazine removal efficiencies eta (SZ) were obtained at overall dilution rates D below 0.284 h(-1). However, the multistage packed bed reactor could be operated at dilution rates as high as D = 3.58 h(-1) with overall simazine removal volumetric rates R (v,SZ) = 19.6 mg L(-1) h(-1), and overall simazine removal specific rates R (X,SZ) = 13.48 mg (mg cell protein)(-1) h(-1). Finally, the consortium's ability to degrade 2-chloro-4,6-diamino-1,3,5-triazine (CAAT), cyanuric acid and the herbicide atrazine, pure or mixed with simazine, was evaluated in fed batch processes.  相似文献   

12.
Coupling advanced oxidative pretreatment with subsequent biodegradation demonstrates potential for treating wastewaters containing biorecalcitrant and inhibitory organic constituents. However, advanced oxidation is indiscriminate, producing a range of products that can be too oxidized, unavailable for biodegradation, or toxic themselves. This problem could be overcome if advanced oxidation and biodegradation occurred together, an orientation called intimate coupling; then, biodegradable organics are removed as they are formed, focusing the chemical oxidant on the non-biodegradable fraction. Intimate coupling has seemed impossible because the conditions of advanced oxidation, for example, hydroxyl radicals and sometimes UV-light, are severely toxic to microorganisms. Here, we demonstrate that a novel photocatalytic circulating-bed biofilm reactor (PCBBR), which utilizes macro-porous carriers to protect biofilm from toxic reactants and UV light, achieves intimate coupling. We demonstrate the viability of the PCBBR system first with UV only and acetate, where the carriers grew biofilm and sustained acetate biodegradation despite continuous UV irradiation. Images obtained by scanning electron microscopy and confocal laser scanning microscopy show bacteria living behind the exposed surface of the cubes. Second, we used slurry-form Degussa P25 TiO2 to initiate photocatalysis of inhibitory 2,4,5-trichlorophenol (TCP) and acetate. With no bacterial carriers, photocatalysis and physical processes removed TCP and COD to 32% and 26% of their influent levels, but addition of biofilm carriers decreased residuals to 2% and 4%, respectively. Biodegradation alone could not remove TCP. Photomicrographs clearly show that biomass originally on the exterior of the carriers was oxidized (charred), but biofilm a short distance within the carriers was protected. Finally, we coated TiO2 directly onto the carrier surface, producing a hybrid photocatalytic-biological carrier. These carriers likewise demonstrated the concept of photocatalytic degradation of TCP coupled with biodegradation of acetate, but continued TCP degradation required augmentation with slurry-form TiO2.  相似文献   

13.
Naphthalene was used as a model compound in order to study the anaerobic pathway of polycyclic aromatic hydrocarbon degradation. Previously we had determined that carboxylation is an initial step for anaerobic metabolism of naphthalene, but no other intermediate metabolites were identified (Zhang & Young 1997). In the present study we further elucidate the pathway with the identification of six novel naphthalene metabolites detected when cultures were fed naphthalene in the presence of its analog 1-fluoronaphthalene. Results from cultures supplemented with either deuterated naphthalene or non-deuterated naphthalene plus [13C]bicarbonate confirm that the metabolites originated from naphthalene. Three of these metabolites were identified by comparison with the following standards: 2-naphthoic acid (2-NA), 5,6,7,8-tetrahydro-2-naphthoic acid, and decahydro-2-naphthoic acid. The presence of 5,6,7,8-tetrahydro-2-NA as a metabolite of naphthalene degradation indicates that the first reduction reaction occurs at the unsubstituted ring, rather than the carboxylated ring. The overall results suggest that after the initial carboxylation of naphthalene, 2-NA is sequentially reduced to decahydro-2-naphthoic acid through 5 hydrogenation reactions, each of which eliminated one double bond. Incorporation of deuterium atoms from D2O into 5,6,7,8-tetrahydro-2-naphthoic acid suggests that water is the proton source for hydrogenation.  相似文献   

14.
A mixed enrichment culture of microorganisms capable of accelerated mineralization of atrazine was isolated from soil treated with successive applications of the herbicide. Liquid cultures of this consortium, in the presence of simple carbon sources, mineralized 96% of the applied atrazine (0.56 mM) within 7 days. Atrazine mineralization in culture is initiated with the formation of the metabolite hydroxyatrazine. In soil treated with atrazine at a concentration of 0.14 mM (concentration is based on total soil mass), and then inoculated with the microbial consortium, the parent compound was completely transformed in 25 days. After 30 days of incubation, 60% of the applied atrazine was accounted for as14CO2. As was found with the liquid cultures, hydroxyatrazine was the major metabolite. After 145 days, soil extractable hydroxyatrazine declined to zero and 86% of the applied atrazine was accounted for as14CO2. No metabolites, other than hydroxyatrazine, were recovered from either the liquid culture or soil inoculated with the consortium. The use of the mixed microbial culture enhanced mineralization more than 20 fold as compared to uninoculated soil.  相似文献   

15.
16.
Sphingomonas yanoikuyae B1 is able to utilize toluene, m-xylene, p-xylene, biphenyl, naphthalene, phenanthrene, and anthracene as sole sources of carbon and energy for growth. A forty kilobase region of DNA containing most of the genes for the degradation of these aromatic compounds was previously cloned and sequenced. Insertional inactivation of bphC results in the inability of B1 to grow on both polycyclic and monocyclic compounds. Complementation experiments indicate that the metabolic block is actually due to a polar effect on the expression of bphA3, coding for a ferredoxin component of a dioxygenase. Lack of the ferredoxin results in a nonfunctional polycyclic aromatic hydrocarbon dioxygenase and a nonfunctional toluate dioxygenase indicating that the electron transfer components are capable of interacting with multiple oxygenase components. Insertional inactivation of a gene for a dioxygenase oxygenase component downstream of bphA3 had no apparent effect on growth besides a polar effect on nahD which is only needed for growth of B1 on naphthalene. Insertional inactivation of either xylE or xylG in the meta-cleavage operon results in a polar effect on bphB, the last gene in the operon. However, insertional inactivation of xylX at the beginning of this cluster of genes does not result in a polar effect suggesting that the genes for the meta-cleavage pathway, although colinear, are organized in at least two operons. These experiments confirm the biological role of several genes involved in metabolism of aromatic compounds by S. yanoikuyae B1 and demonstrate the interdependency of the metabolic pathways for polycyclic and monocyclic aromatic hydrocarbon degradation. Received 13 May 1999/ Accepted in revised form 05 July 1999  相似文献   

17.
AIMS: To understand the microbial ecology underlying trichloethene (TCE) degradation in a coupled anaerobic/aerobic single stage (CANOXIS) reactor oxygenated with hydrogen peroxide (H2O2) and in an upflow anaerobic sludge bed (UASB) reactor. METHODS AND RESULTS: The molecular study of the microbial population dynamics and a phylogenetic characterization were conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). In both reactors, TCE had a toxic effect on two uncultured bacterial populations whereas oxygen favoured the growth of aerobic species belonging to Rhizobiaceae and Dechloromonas. No methanotrophic bacteria were detected when targeting 16S rRNA gene with universal primers. Alternatively, pmo gene encoding the particulate methane monooxygenase of Methylomonas sp. LW21 could be detected in the coupled reactor when H2O2 was supplied at 0.7 g O2 l day(-1). CONCLUSIONS: Methylomonas sp. LW21 that could be responsible for the aerobic degradation of the TCE by-products is not among the predominant bacterial populations in the coupled reactor. It seems to have been outcompeted by heterotrophic bacteria (Rhizobiaceae and Dechloromonas sp.) for oxygen. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained show the limitations of the coupled reactor examined in this study. Further investigations should focus on the operating conditions of this reactor in order to favour the growth of the methanotrophs.  相似文献   

18.
Experiments were performed to test the ability of a mathematical model to predict naphthalene transport and biodegradation. Pseudomonas putida G7, a model bacterial strain capable of degrading naphthalene, was added to a column packed with the soil that had been pre-equilibrated with naphthalene. Model prediction for transport and degradation were based on predetermined parameters that described naphthalene desorption kinetics and the utilization of naphthalene by the test bacterium. However, initial prediction for naphthalene biodegradation was high, and the formation of cell aggregates is advanced as a plausible explanation. Access of substrate to cells in the interior of an aggregate would be restricted. When the numerical simulation was conducted with a factor to account for cell aggregation, it successfully described the experimental data. Thus, with a single adjustable parameter (an average effectiveness factor), the model predicted macroscopic responses of naphthalene in soil-columns where naphthalene was subject to transport and biodegradation.  相似文献   

19.
Embar K  Forgacs C  Sivan A 《Biodegradation》2006,17(4):369-377
The biodegradation capacity of indigenous microbial populations was examined in a desert soil contaminated with crude oil. To evaluate biodegradation, soil samples supplemented with 5, 10 or 20% (w/w) of crude oil were incubated for 90 days at 30 °C. The effect of augmentation of the soil with vermiculite (50% v/v) as a bulking agent providing increased surface/volume ratio and improved soil aeration was also tested. Maximal biodegradation (91%) was obtained in soil containing the highest concentration of crude oil (20%) and supplemented with vermiculite; only 74% of the oil was degraded in samples containing the same level of crude oil but lacking vermiculite. Gas chromatograms of distilled fractions of crude oil extracted from the soil before and after incubation demonstrated that most of the light and part of the intermediate weight fractions initially present in the oil extracts could not be detected after incubation. Monitoring of microbial population densities revealed an initial decline in bacterial viable counts after exposure to oil, presumably as a result of the crude oil’s toxicity. This decline was followed by a steep recovery in microbial population density, then by a moderate increase that persisted until the end of incubation. By contrast, the inhibitory effect of crude oil on the fungal population was minimal. Furthermore, the overall increased growth response of the fungal population, at all three levels of contamination, was about one order of magnitude higher than that of the bacterial population.  相似文献   

20.
Leachate from a municipal landfill site, which has been treated by biological process, was treated by photoelectrochemical oxidation in a pilot scale flow reactor, using DSA anode and UV light irradiation. At a current density of 67.1 mA/cm2 and 2.5 h reaction time, the removal rates achieved were for 74.1% COD, 41.6% for TOC, and 94.5% for ammonium in the electrolysis process with UV light irradiation. In comparison, the removal rates of COD, TOC, and ammonium were decreased in the individual electrolysis process, respectively. The increase induced by the UV light irradiation was analyzed. The removal rates increased with the increase of current densities in the photoelectrochemical process. Combined with UV–vis spectra and gas chromatography–mass spectroscopy analysis, it is believed that the organic contaminants were efficiently mineralized into small molecular acids. At the meantime, the concentrations of metal ions in the landfill leachate were largely reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号