首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chronotropic responses to angiotensins I and II (5 micrograms in 1 mL Tyrode's solution) injected into the sinus node artery were assessed before and after the intravenous administration of captopril (2 mg/kg) and saralasin (20 micrograms/kg) in anaesthetized dogs. The effects of angiotensin II given intravenously were also observed. The animals (n = 8) were vagotomized and pretreated with propranolol (1 mg/kg, i.v.) to prevent baroreceptor-mediated responses to increases in blood pressure. Injection of angiotensin I into the sinus node artery induced significant increases in heart rate (114 +/- 6 vs. 133 +/- 6 beats/min) and in systemic systolic (134 +/- 13 vs. 157 +/- 14 mmHg; 1 mmHg = 133.3 Pa) and diastolic (95 +/- 10 vs. 126 +/- 13 mmHg) blood pressures. Similar results were obtained when angiotensin II was injected into the sinus node artery, but intravenous injection induced changes in systolic (138 +/- 8 vs. 180 +/- 25 mmHg) and diastolic (103 +/- 8 vs. 145 +/- 20 mmHg) blood pressures only. Captopril induced a significant decrease in systolic (118 +/- 11 vs. 88 +/- 12 mmHg) and diastolic (84 +/- 9 vs. 59 +/- 9 mmHg) blood pressures without affecting the heart rate (109 +/- 6 vs. 106 +/- 6 beats/min). Saralasin produced a significant increase in systolic (109 +/- 7 vs. 126 +/- 12 mmHg) blood pressure only. Increments in heart rate and systolic and diastolic blood pressures in response to angiotensins I and II were, respectively, abolished by captopril and saralasin. It was concluded that angiotensin II has, in vivo, a direct positive chronotropic effect that can be blocked by saralasin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Mori T  Hashimoto A 《Life sciences》2006,79(7):637-640
We observed the direct positive chronotropic effect of angiotensin II in mouse atria and characterized its pharmacological property. C57BL/6J mice were anesthetized with pentobarbital and hearts were quickly excised. Atrial preparations including right and left atrium were isolated and suspended in the organ bath filled with Krebs-Henseleit solution gassed with 95% O2 and 5% CO2. Angiotensin II at concentrations of 10(-10) to 10(-6) M caused concentration-dependent increase in heart rate, and the maximal response was about 13% of that by isoproterenol. The effect was blocked by the selective AT1-receptor antagonist, losartan at concentrations of 10(-6) M, but not by the selective beta-blocker, nadolol at concentration of 10(-5) M. Furthermore, angiotensin I also caused concentration-dependent increase in heart rate, and the effect was blocked by angiotensin converting enzyme (ACE) inhibitor, captopril at concentrations of 10(-6) M. These results suggested that angiotensin I is converted to angiotensin II via ACE system in mice atria, and regulate heart rate through AT1-receptor stimulation, not by beta-adrenergic receptor.  相似文献   

3.
(1) Using isolated, blood-perfused atrium preparation of dogs, the effect of ischemia on sinus rate was studied in ten preparations. Cessation of atrial perfusion usually induced gradual deceleration of the sinus rate which was not blocked by atropine. Occasionally, brief and slight sinus acceleration was initially observed in three of ten atrium preparations. This positive chronotropic effect was not blocked by a beta-adrenoceptor blocking agent, propranolol. (2) In every preparation, just after release of occlusion, there was an initial profound sinus deceleration, occasionally followed by oscillatory changes in sinus rate. (3) The chronotropic response pattern induced by temporary occlusion and release of the sinus node artery was not influenced by propranolol, phenoxybenzamine or atropine treatment. (4) These results suggest that ischemia exerts its principal effect directly on the sino auricular node pacemaker cells, rather than on neighboring nerve endings.  相似文献   

4.
At a critical premature interval, atrial premature beats encounter sinus node refractoriness and are blocked on entering and fail to reset the sinus node, resulting in interpolation of the premature beat. The transition from reset to interpolated response has been used to define the effective refractory period of the sinus node (SNERP). In an in vitro preparation of rabbit sinus node, we evaluated the effects of acetylcholine, propranolol, and verapamil on SNERP. Results obtained in the control state were compared with those obtained during superfusion with drugs, all of which prolonged refractoriness: acetylcholine from 233 +/- 41 (SD) to 325 +/- 88 ms; propranolol from 215 +/- 60 to 241 +/- 67 ms; and verapamil from 192 +/- 69 to 254 +/- 79 ms (p less than 0.005 with all drugs). The site of block of premature beats was mapped between sinus node and crista terminalis with an intracellular microelectrode. All three drugs resulted in block of premature beats at sites farther from the primary pacemaker site. Thus, acetylcholine, propranolol, and verapamil prolong sinus node refractoriness.  相似文献   

5.
1. The chronotropic effect of norepinephrine was studied in isolated spontaneously beating atrial preparations of carp (Cyprinus carpio) heart. 2. Norepinephrine, 0.1 microM, caused a positive chronotropic effect, while at 1 microM it caused either a positive or a negative chronotropic effect. The positive chronotropic effect, observed in 13 preparations, was potentiated by phentolamine and almost completely blocked by propranolol. 3. The negative chronotropic effect observed in the other 5 preparations was greater in the presence of propranolol, reduced by phentolamine and not affected by atropine. 4. These results indicate that alpha- and beta-adrenoceptors may coexist, mediating the negative and positive chronotropic effects, respectively, in isolated atrial preparations of carp heart.  相似文献   

6.
The atrium isolated from the seawater-adapted eel beats spontaneously in normal Ringer solution for more than 10 hr. The strength of beating was inhibited by acetylcholine (ACh) and the inhibitory effects were blocked by atropine, a muscarinic ACh-receptor antagonist, indicating existence of muscarinic ACh-receptor on the atrium. The atrial contractility was stimulated by catecholamines and their agonists; the order of potency being isoproterenol > adrenaline (AD) = noradrenaline (NA) > phenylephrine > clonidine. The stimulatory effects of AD was completely blocked by propranolol, a β-adrenoceptor antagonist, but not by phentolamine, an α-adrenoceptor antagonist. These data were consistent with characteristics of β-adrenoceptors. Further characterization of the β-receptor was not attempted. The positive inotropic and chronotropic actions of AD were not completely blocked either by atenolol, a β1-adrenoceptor antagonist, or by ICI 118551, a β2-adrenoceptor antagonist. When electrical current with a short duration (0.25 msec) was passed through the atrium, the beating was inhibited initially, then enhanced later. The initial inhibition was inhibited by atropine and the later enhancement was blocked by propranolol. These results indicate that the electrical stimulation releases ACh and catecholamine(s) from the nerve endings. The positive inotropic and chronotropic effects of catecholamines were mimicked by tyramine, a catecholamine releaser from sympathetic nerve endings.  相似文献   

7.
A rise in cytosolic free calcium ([Ca2+]i) is thought to be the principal mediator in vascular smooth muscle contraction. Quantitative changes of [Ca2+]i in response to two vasoconstrictor peptide hormones, angiotensin II and vasopressin, were directly measured in monolayers of adherent cultured rat aortic smooth muscle cells loaded with the fluorescent calcium indicator Quin 2. Angiotensin II induced rapid, concentration-dependent rises in [Ca2+]i from 1.53 +/- 0.27 X 10(-7) (n = 16) up to 1.2 X 10(-6) M, with ED50 of 0.45 X 10(-9) M, an effect which was blocked by the antagonist analogue [Sar1, Ala8]angiotensin II. Vasopressin also elicited transient rises in [Ca2+]i to peak levels of about 8 X 10(-7) M, with ED50 of 1.05 X 10(-9) M, and this response was completely abolished by a vasopressor antagonist. In calcium-free medium, basal [Ca2+]i levels fell to 0.92 +/- 0.24 X 10(-7) M (n = 4), and both hormones were still able to raise [Ca2+]i, although to a lesser extent. Readdition of extracellular calcium following the [Ca2+]i transient induced a second, slower [Ca2+]i rise. In calcium-containing medium, lanthanum ion (2 X 10(-5) M) reduced peptide-evoked [Ca2+]i rises to the values observed in calcium-free medium. Stimulation with each peptide completely desensitized the smooth muscle cells to a subsequent identical challenge, with little crosstachyphylaxis. Potassium ion (50 mM) only minimally affected [Ca2+]i levels. The calcium channel blocker nifedipine (10(-6) M) did not prevent the [Ca2+]i rises induced by angiotensin II, vasopressin, or potassium. These findings indicate that the two physiologically important vasoconstrictor hormones angiotensin II and vasopressin rapidly raise [Ca2+]i in cultured vascular smooth muscle cells, in part by mobilizing calcium from intracellular pools and in part through activation of receptor-operated calcium channels.  相似文献   

8.
Substance P (SP) evokes bradycardia that is mediated by cholinergic neurons in experiments with isolated guinea pig hearts. This project investigates the negative chronotropic action of SP in vivo. Guinea pigs were anesthetized with urethane, vagotomized and artificially respired. Using this model, IV injection of SP (32 nmol/kg/50 microl saline) caused a brief decrease in heart rate (-30+/-3 beats/min from a baseline of 256+/-4 beats/min, n = 27) and a long-lasting decrease in blood pressure (-28+/-2 mmHg from baseline of 51+/-5 mmHg, n = 27). The negative chronotropic response to SP was attenuated by muscarinic receptor blockade with atropine (-29 +/- 9 beats/min before vs -8 +/- 2 beats/min after treatment, P = 0.0204, n = 5) and augmented by inhibition of cholinesterases with physostigmine (-23 +/- 6 beats/min before versus -74 +/- 20 beats/min after treatment, P = 0.0250, n = 5). Ganglion blockade with chlorisondamine did not diminish the negative chronotropic response to SP. In another series of experiments, animals were anesthetized with sodium pentobarbital or urethane and studied with or without vagotomy. Neither anesthetic nor vagotomy had a significant effect on the negative chronotropic response to SP (F3,24 = 1.97, P = 0.2198). Comparison of responses to 640 nmol/kg nitroprusside and 32 nmol/kg SP demonstrated that the bradycardic effect of SP occurs independent of vasodilation. These results suggest that SP can evoke bradycardia in vivo through stimulation of postganglionic cholinergic neurons.  相似文献   

9.
This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP responses to phenylephrine or sodium nitroprusside and autoregressive spectral analysis. Measurements were made during control period, 7 days after induction of diabetes, and 7 days after ICV leptin infusion. STZ diabetes was associated with hyperglycemia (422 +/- 17 mg/dl) and bradycardia (-79 +/- 4 beats/min). Leptin decreased glucose levels (165 +/- 16 mg/dl) and raised HR to control values (303 +/- 10 to 389 +/- 10 beats/min). Intrinsic HR (IHR) and chronotropic responses to a full-blocking dose of propranolol and atropine were reduced during diabetes (260 +/- 7 vs. 316 +/- 6, -19 +/- 2 vs. -43 +/- 6, and 39 +/- 3 vs. 68 +/- 8 beats/min), and leptin treatment restored these variables to normal (300 +/- 7, -68 +/- 10, and 71 +/- 8 beats/min). Leptin normalized BRS (bradycardia, -2.6 +/- 0.3, -1.7 +/- 0.2, and -3.0 +/- 0.5; and tachycardia, -3.2 +/- 0.4, -1.9 +/- 0.3, and -3.4 +/- 0.3 beats.min(-1).mmHg(-1) for control, diabetes, and leptin) and HR variability (23 +/- 4 to 11 +/- 1.5 ms2). Chronic glucose infusion to maintain hyperglycemia during leptin infusion did not alter the effect of leptin on IHR but abolished the improved BRS. These results show rapid impairment of autonomic nervous system control of HR after the induction of diabetes and that central nervous system actions of leptin can abolish the hyperglycemia as well as the altered IHR and BRS in STZ-induced diabetes.  相似文献   

10.
In vitro studies on the new beta-adrenoceptor antagonist, cetamolol (Betacor), have demonstrated that the compound is a potent antagonist of the chronotropic effects of isoproterenol on guinea pig atria. The pA2 value (8.05) of cetamolol was slightly lower than that of propranolol (8.44). The compound was shown to possess a moderate degree of cardioselectivity as indicated by a lower pA2 value for the antagonism of isoproterenol-induced relaxation of the isolated guinea pig trachea (pA2 = 7.67) compared with that derived from atrial experiments (pA2 = 8.05). Up to concentrations of 10(-4) M, cetamolol displayed negligible negative inotropic activity relative to propranolol in the electrically stimulated guinea pig left atrial preparation. When applied to isolated right atria from reserpinized rats, cetamolol had a positive chronotropic effect (approximately 75% of that displayed by practolol) which was antagonized by pretreatment with propranolol, thus indicating intrinsic sympathomimetic activity. Specificity experiments in a number of isolated tissues indicated that cetamolol had very little antihistaminic, anticholinergic, alpha 1-adrenergic blocking, or calcium antagonistic properties. Biochemical receptor binding studies are in general agreement with the observations from the isolated tissue experiments.  相似文献   

11.
The present study tested the hypothesis that nitric oxide (NO) contributes to impaired baroreflex gain of pregnancy and that this action is enhanced by angiotensin II. To test these hypotheses, we quantified baroreflex control of heart rate in nonpregnant and pregnant conscious rabbits before and after: 1) blockade of NO synthase (NOS) with Nomega-nitro-L-arginine (20 mg/kg iv); 2) blockade of the angiotensin II AT1 receptor with L-158,809 (5 microg x kg(-1) x min(-1) iv); 3) infusion of angiotensin II (1 ng x kg(-1) x min(-1) nonpregnant, 1.6-4 ng x kg(-1) x min(-1) pregnant iv); 4) combined blockade of angiotensin II AT(1) receptors and NOS; and 5) combined infusion of angiotensin II and blockade of NOS. To determine the potential role of brain neuronal NOS (nNOS), mRNA and protein levels were measured in the paraventricular nucleus, nucleus of the solitary tract, caudal ventrolateral medulla, and rostral ventrolateral medulla in pregnant and nonpregnant rabbits. The decrease in baroreflex gain observed in pregnant rabbits (from 23.3 +/- 3.6 to 7.1 +/- 0.9 beats x min(-1) x mmHg(-1), P < 0.05) was not reversed by NOS blockade (to 8.3 +/- 2.5 beats x min(-1) x mmHg(-1)), angiotensin II blockade (to 5.0 +/- 1.1 beats x min(-1) x mmHg(-1)), or combined blockade (to 12.3 +/- 4.8 beats x min(-1) x mmHg(-1)). Angiotensin II infusion with (to 5.7 +/- 1.0 beats x min(-1) x mmHg(-1)) or without (to 8.4 +/- 2.4 beats x min(-1) x mmHg(-1)) NOS blockade also failed to improve baroreflex gain in pregnant or nonpregnant rabbits. In addition, nNOS mRNA and protein levels in cardiovascular brain regions were not different between nonpregnant and pregnant rabbits. Therefore, we conclude that NO, either alone or via an interaction with angiotensin II, is not responsible for decrease in baroreflex gain during pregnancy.  相似文献   

12.
To determine whether atrial natriuretic peptide (ANP) has an inotropic effect, the contractility of spontaneously beating cultured chick embryo ventricular cells was studied in response to rat-ANP (1-23) superfused at concentrations ranging from 10(-10) M to 2.5 x 10(-7) M. r-ANP reversibly decreased contractility with a threshold concentration of 10(-8) M; at the highest concentration, r-ANP decreased contractility to a moderate extent (-30 +/- 4%) r-ANP increased dose-dependently intracellular cGMP levels. Stimulation of contractility with [Ca2+], the calcium-channel agonist BAY K 8644 or isoproterenol attenuated to various degrees the inhibitory effect of r-ANP. By contrast, the inhibitory effect of r-ANP on contractility was unchanged or even enhanced after stimulation of contractility by angiotensin II. There was no difference in r-ANP-induced increase in cGMP whether cells were pre-incubated with angiotensin II or not. These results indicate that r-ANP was able to decrease contractility of cultured cardiac myocytes and suggest a preferential antagonism of the inotropic effect of angiotensin II.  相似文献   

13.
Intracellular free Ca2+ concentrations were monitored in vascular smooth muscle cells (VSMC) using the Ca2+-sensitive dye fura II. Superfusion of VSMC with platelet-activating factor (S-PAF; 1-100 nM) increased cytosolic Ca2+ in a dose-dependent manner. The response was transient and returned to base line even though the agonist was still present. A second, higher dose of PAF did not elicit a response. The inactive optical isomer, R-PAF, was ineffective suggesting that the S-PAF response is specific and receptor-mediated. Pretreatment of VSMC with PAF attenuated angiotensin II-stimulated Ca2+ mobilization but not vasopressin-stimulated Ca2+ mobilization. Treatment of VSMC with PAF (10 nM) stimulated inositol trisphosphate and inositol tetrakisphosphate formation above control by 260 +/- 15% and 195 +/- 11%, respectively. Diacylglycerol levels also rose during PAF stimulation and remained increased over 15 min. Pretreatment of VSMCs with phorbol-12,13-myristate acetate (10 nM) for 30 min abolished both the PAF- and angiotensin II-induced increases in cytosolic Ca2+, but not the vasopressin-induced increase. Pretreatment of VSMC with dioctanoylglycerol (10 microM) abolished the S-PAF-, angiotensin II-, and vasopressin-induced elevation in cytosolic Ca2+. We propose that this desensitization is possibly mediated by diacylglycerol formed in response to PAF.  相似文献   

14.
The influence of intracellular angiotensin I (Ang I) and angiotensin II (Ang II) on the process of cell communication was investigated in isolated cell pairs from the failing heart of cardiomyopathic hamsters at 2 and at 6 months of age. Measurements of junctional conductance were performed on weekly coupled ventricular cells (4-5.3 nS) using two separated voltage clamp circuits. The results indicated that at 2 months of age, when no signs of heart failure are detected, the angiotensin converting enzyme (ACE) activity is low and similar to controls (0.26 nmol/mg/min). Here the intracellular dialysis of angiotensin I (10(-8) M) caused a decline of junctional conductance of 33+/-3.6% (n=35) (P<0.05) within 10 min while the administration of the same concentration of Ang I elicited cell uncoupling in cell pairs of 6-month-old cardiomyopathic hamsters in which the ACE activity was enhanced (0.41+/-0.05 nmol/mg/min) (P<0.05). Intracellular administration of angiotensin II in cell pairs of 2-month-old hamsters caused a decline of junctional conductance of only 25+/-4.5% (n=35) (P<0.05) compared to cell uncoupling in 6-month-old cardiomyopathic hamsters. Intracellular losartan(10(-8) M) reduced the effect of intracellular Ang II by 68+/-3.5% (n=28) on 2-month-old hamsters and abolished the effect of the peptide on 6-month-old hamsters. To investigate the influence of endogenous angiotensin II on the regulation of cell coupling, enalapril maleate (10(-8) M) or enalaprilat (10(-9) M) was used. The results indicated that at 2 months of age, no change in cell coupling was elicited by the ACE inhibitor while at 6 months of age, there was an increment of cell coupling of 72+/-6.2% (P<0.05). Similar results were found with intracellular losartan (10(-8) M). These results support the view that endogenous angiotensin II is involved in the regulation of cell communication at an advanced stage of heart failure when the ACE activity is enhanced and the cardiac renin angiotensin system (RAS) is activated.  相似文献   

15.
The direct effects of atrial natriuretic factor (ANF) and acetylcholine (ACh) on isolated guinea pig ventricular papillary muscle were studied. ANF (3 x 10(-9) - 3 x 10(-7) M), a cardiogenic hormone, had no significant electrical or mechanical effects on guinea pig papillary muscle driven at a frequency of 60 beats/min in normal (4 mM) and high [K]0 (27 mM) Tyrode solutions. On the other hand, ACh (3 x 10(-8) - 3 x 10(-7) M) caused a significant shortening of action potential duration and the contractile force showed no change or a slight decrease. At high concentration (5 microM), ACh reduced action potential durations at 50% and 90% repolarization (APD50 and APD90) by 10.5 +/- 2.1% and 12.4 +/- 1.8%, respectively, but the contractile force was slightly increased by 9.8 +/- 1.2%. In eleven of twenty-six preparations, spontaneous activity occurred and intermingled with driven activity. The ectopic rhythms were suppressed by ACh (1-5 microM). The changes in electrical but not mechanic activity induced by ACh were suppressed in the presence of five micromolar atropine. These results reveal that, in guinea pig papillary muscle, ANF had no direct chronotropic or inotropic effect. ACh may reduce APD and spontaneous discharges through an activation of muscarinic receptors but enhance twitch tension through other mechanisms.  相似文献   

16.
1. The cardiac responses of isolated frog (Rana tigrina) atria to peptide hormones were studied.2. Calcitonin gene-related peptide (CGRP), arginine vasotocin (AVT), bovine parathyroid hormone fragment (bPTH-(1–34)) and oxytocin (OXY) produced dose-related positive chronotropic and inotropic responses; atrial natriuretic peptide (ANP) was negative chronotropic and inotropic; cholecystokinin (CCK), vasoactive intestinal peptide (VIP) were without effects.3. The dose-related responses under bPTH-(1–34) stimulation but not CGRP or AVT were attenuated in the presence of ANP (300 ng/ml, ≈0.98 × 10−7 M). As expected ANP decreased the basal AR and AT responses of the isolated atria and the inhibitory effects were dose-dependent.4. As shown previously, propranolol blocked the atrial tension stimulated by bPTH (1–34) but did not alter the cardiac responses to CGRP and AVT.5. In the presence of β-adrenergic blocker (propranolol 10−7M) or ANP (10−7M), the AR and AT changes under ISO stimulation in the frog were also decreased.6. These cardiac changes suggest the cardiac inhibitory effects of ANP are related to β-adrenoceptor activity and ANP might be a β antagonist.  相似文献   

17.
To investigate whether altered function of adenosine receptors could contribute to sinus node or atrioventricular (AV) nodal dysfunction in conscious mammals, we studied transgenic (TG) mice with cardiac-specific overexpression of the A1 adenosine receptor (A1AR). A Holter ECG was recorded in seven freely moving littermate pairs of mice during normal activity, exercise (5 min of swimming), and 1 h after exercise. TG mice had lower maximal heart rates (HR) than wild-type (WT) mice (normal activity: 437 +/- 18 vs. 522 +/- 24 beats/min, P < 0.05; exercise: 650 +/- 13 vs. 765 +/- 28 beats/min, P < 0.05; 1 h after exercise: 588 +/- 18 vs. 720 +/- 12 beats/min, P < 0.05; all values are means +/- SE). Mean HR was lower during exercise (589 +/- 16 vs. 698 +/- 34 beats/min, P < 0.05) and after exercise (495 +/- 16 vs. 592 +/- 27 beats/min, P < 0.05). Minimal HR was not different between genotypes. HR variability (SD of RR intervals) was reduced by 30% (P < 0.05) in TG compared with WT mice. Pertussis toxin (n = 4 pairs, 150 microg/kg ip) reversed bradycardia after 48 h. TG mice showed first-degree AV nodal block (PQ interval: 42 +/- 2 vs. 37 +/- 2 ms, P < 0.05), which was diminished but not abolished by pertussis toxin. Isolated Langendorff-perfused TG hearts developed spontaneous atrial arrhythmias (3 of 6 TG mice vs. 0 of 9 WT mice, P < 0.05). In conclusion, A1AR regulate sinus nodal and AV nodal function in the mammalian heart in vivo. Enhanced expression of A1AR causes sinus nodal and AV nodal dysfunction and supraventricular arrhythmias.  相似文献   

18.
In our previous report (Biochem. Biophys. Res. Commun. 165(3), 1221-1228, 1989), we have demonstrated the biphasic increase of intracellular free calcium concentration ([Ca++]i) induced by angiotensin II (ANG II) in isolated rat early proximal tubule (S1). The present study was undertaken to determine the effect of HgCl2 on ANG II-induced [Ca++]i increase using Fura-2. HgCl2 (10(-10) M2-10(-8) M) potentiated the [Ca++]i increase induced by ANG II (10(-11) M) in a dose-dependent manner. To determine the mechanism of stimulatory effect by HgCl2 on ANG II-induced [Ca++]i increase, nephron segments were pretreated with 10(-4) M propranolol, a phospholipase C inhibitor. The stimulatory effect by 10(-9) M HgCl2 in 10(-11) M ANG II-induced [Ca++]i increase was completely inhibited by propranolol. Moreover, 10(-4) M propranolol completely blocked the stimulatory effect of HgCl2 on ANG II-mediated IP3 production. This study suggests for the first time that HgCl2 stimulates the [Ca++]i increment induced by ANG II, possibly through an activation of phospholipase C.  相似文献   

19.
Responsiveness to ouabain of the inotropic and chronotropic effects in rat atrial muscles during development (3-18 wks old) was examined. In spontaneously beating rat right atrial muscles, ouabain (3-30 microM) caused a potent positive inotropic effect in a concentration-dependent manner, but failed to have a chronotropic effect; at 30 microM, 78.6 +/- 3.4% (n = 14, p<0.01) in the contractile force and -1.1 +/- 2.3% (n = 14, p>0.05) in the sinus rate in 10-wk-old rats. The myocardium during development increased the responsiveness to ouabain (10 microM) by 27.6 +/- 2.1% (n = 14, p<0.01), 58.7 +/- 3.3% (n = 14, p<0.001), and 47.2 +/- 2.3% (n = 14, p<0.001) in 3-, 10-, and 18- wk-old rats, respectively. However, the response on the sinus rate was not modified in all of the developing stages. Higher frequencies of stimulation caused the more potent inotropic effect in left atrial muscles. In the experiments using a Ca2+-sensitive fluorescent dye (Fura-2), ouabain (10 and 30 microM) increased the cellular Ca2+ concentrations by 3.0 +/- 2.1% (n = 6, p>0.05) and 12.7 +/- 1.5% (n = 6, p<0.05) in 3-wk-old rats and by 13.0 +/- 2.7% (n = 6, p<0.05) and 42.9 +/- 3.1% (n = 6, p<0.01) in 18-wk-old rats, respectively. These results suggest that the ouabain-evoked response is enhanced during development (but tends to decrease from the maximum after maturing), presumably resulting from developmental degrees of cellular mechanisms such as Na+/K+ pump activity and Na+/Ca2+ exchange and is reflected by changes in the cellular Ca2+ concentration.  相似文献   

20.
Intravenous amitraz caused significant hypotension and bradycardia in pentobarbitone anaesthetized guinea-pigs. Depression of blood pressure reached a plateau with a dose of 10 mg/kg but heart rate continued to fall in a dose-dependent manner, up to a fall of 90 beats per minute after a total of 160 mg/kg/min. Amitraz was then tested on spontaneously beating guinea-pig isolated atria. The maximum bath concentration approximated a blood concentration produced by 5 mg/kg amitraz in the guinea-pig (2.3 X 10(-4) M). Amitraz did not significantly shift the dose-response curve to isoprenaline or acetylcholine but antagonized histamine rate responses competitively in the presence of propranolol (2 X 10(-6) M). Propranolol unmasked a dose-dependent depressant effect of amitraz on atrial rate, an effect abolished with atropine (1 X 10(-5) M). Amitraz increased atrial force of contraction, an effect which was not seen when propranolol was present in the bath solution. Amitraz also depressed atrial rate directly, but this effect was minor in comparison to bradycardia seen in the guinea-pig. It is likely that the cardiovascular depression seen in the guinea-pig following amitraz i.v. is caused by an alteration in autonomic drive rather than a significant direct cardiac effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号