首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bifunctional enzyme, L-(+)-tartrate dehydrogenase-D-(+)-malate dehydrogenase (decarboxylating) (EC 1.1.1.93 and EC 1.1.1. . . , respectively), was discovered in cells of Rhodopseudomonas sphaeroides Y, which accounts for the ability of this organism to grow on L-(+)-malate. The enzyme was purified 110-fold to homogeneity with a yield of 51%. During the course of purification, including ion-exchange chromatography and preparative gel electrophoresis, both enzyme activities appeared to be in association. The ratio of their activities remained almost constant [1:10, L-(+)-tartrate dehydrogenase/D-(+)-malate dehydrogenase (decarboxylating)] throughout all steps of purification. Analysis by polyacrylamide gel electrophoresis revealed the presence of a single protein band, the position of which was coincident with both L-(+)-tartrate dehydrogenase and D-(+)-malate dehydrogenase (decarboxylating) activities. The apparent molecular weight of the enzyme was determined to be 158,000 by gel filtration and 162,000 by ultracentrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single polypeptide chain with an estimated molecular weight of 38,500, indicating that the enzyme consisted of four subunits of identical size. The isoelectric point of the enzyme was between pH 5.0 and 5.2. The enzyme catalyzed the NAD-linked oxidation of L-(+)-tartrate as well as the oxidative decarboxylation of D-(+)-malate. For both reactions, the optimal pH was in a range from 8.4 to 9.0. The activation energy of the reaction (delta Ho) was 71.8 kJ/mol for L-(+)-tartrate and 54.6 kJ/mol for D-(+)-malate. NAD was required as a cosubstrate, and optimal activity depended on the presence of both Mn2+ and NH4+ ions. The reactions followed Michaelis-Menten kinetics, and the apparent Km values of the individual reactants were determined to be: L-(+)-tartrate, 2.3 X 10(-3) M; NAD, 2.8 X 10(-4) M; and Mn2+, 1.6 X 10(-5) M with respect to L-(+)-tartrate; and D-(+)-malate, 1.7 X 10(-4) M; NAD, 1.3 X 10(-4); and Mn2+, 1.6 X 10(-5) M with respect to D-(+)-malate. Of a variety of compounds tested, only meso-tartrate, oxaloacetate, and dihydroxyfumarate were effective inhibitors. meso-Tartrate and oxaloacetate caused competitive inhibition, whereas dihydroxyfumarate caused noncompetitive inhibition. The Ki values determined for the inhibitors were, in the above sequence, 1.0, 0.014, and 0.06 mM with respect to L-(+)-tartrate and 0.28, 0.012, and 0.027 mM with respect to D-(+)-malate.  相似文献   

2.
The L-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270,000, has 6 sub-units, each of molecular weight approximately 43,000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The Kampp for NAD+ is 14 muM and 60 muM at low and high NAD concentrations respectively.  相似文献   

3.
The Gram-negative bacterium Rhizobium meliloti contains two distinct malic enzymes. We report the purification of the two isozymes to homogeneity, and their in vitro characterization. Both enzymes exhibit unusually high subunit molecular weights of about 82 kDa. The NAD(P)(+) specific malic enzyme [EC 1.1.1.39] exhibits positive co-operativity with respect to malate, but Michaelis-Menten type behavior with respect to the co-factors NAD(+) or NADP(+). The enzyme is subject to substrate inhibition, and shows allosteric regulation by acetyl-CoA, an effect that has so far only been described for some NADP(+) dependent malic enzymes. Its activity is positively regulated by succinate and fumarate. In contrast to the NAD(P)(+) specific malic enzyme, the NADP(+) dependent malic enzyme [EC 1.1.1.40] shows Michaelis-Menten type behavior with respect to malate and NADP(+). Apart from product inhibition, the enzyme is not subjected to any regulatory mechanism. Neither reductive carboxylation of pyruvate, nor decarboxylation of oxaloacetate, could be detected for either malic enzyme. Our characterization of the two R. meliloti malic enzymes therefore suggests a number of features uncharacteristic for malic enzymes described so far.  相似文献   

4.
1. Kinetic experiments suggested the possible existence of at least two different NAD(+)-dependent aldehyde dehydrogenases in rat liver. Distribution studies showed that one enzyme, designated enzyme I, was exclusively localized in the mitochondria and that another enzyme, designated enzyme II, was localized in both the mitochondria and the microsomal fraction. 2. A NADP(+)-dependent enzyme was also found in the mitochondria and the microsomal fraction and it is suggested that this enzyme is identical with enzyme II. 3. The K(m) for acetaldehyde was apparently less than 10mum for enzyme I and 0.9-1.7mm for enzyme II. The K(m) for NAD(+) was similar for both enzymes (20-30mum). The K(m) for NADP(+) was 2-3mm and for acetaldehyde 0.5-0.7mm for the NADP(+)-dependent activity. 4. The NAD(+)-dependent enzymes show pH optima between 9 and 10. The highest activity was found in pyrophosphate buffer for both enzymes. In phosphate buffer there was a striking difference in activity between the two enzymes. Compared with the activity in pyrophosphate buffer, the activity of enzyme II was uninfluenced, whereas the activity of enzyme I was very low. 5. The results are compared with those of earlier investigations on the distribution of aldehyde dehydrogenase and with the results from purified enzymes from different sources.  相似文献   

5.
1. The disappearance of pyridine nucleotides during incubation with mosquito homogenates proceeds through the hydrolysis of the pyrophosphate linkage of these compounds as demonstrated by the formation of NMN and AMP from NAD(+). This reaction was also demonstrated by the loss in the coenzyme functioning property of NAD(+) (yeast alcohol dehydrogenase reaction) without a concomitant loss in reactivity towards cyanide. Transglycosidase activity was not observed in the mosquito homogenates, and low concentrations of nicotinamide did not inhibit the NAD(+) splitting activity of these homogenates. These observations are all in accord with the presence in these homogenates of a NAD(+) pyrophosphatase rather than a NADase. 2. The NAD(+) pyrophosphatase is destroyed by boiling, is not heat-activated, and has a pH optimum at pH8.75. In addition to NAD(+), other dinucleotides such as NADP(+), the 3-acetylpyridine and thionicotinamide analogues of NAD(+) and the thionicotinamide analogue of NADP(+), function as substrates in the hydrolysis catalysed by the pyrophosphatase. 3. A decrease in the specific activity of NAD(+) pyrophosphatase was observed during larval development, and a barely detectable activity was found in the pupa and adult. 4. Enzyme activity per organism increased in the larva but decreased to a very low value in the pupa and adult. These results indicate that the decrease in specific activity was due to a decrease in enzyme concentration rather than an increase in amounts of protein.  相似文献   

6.
Acetylpyridine NADP replaced NADP in promoting the Mn2+ ion-requiring mitochondrial "malic" enzyme of Hymenolepis diminuta. Disrupted mitochondria displayed low levels of an apparent oxaloacetate-forming malate dehydrogenase activity when NAD or acetylpyridine NAD served as the coenzyme. Significant malate-dependent reduction of acetylpyridine NAD by H. diminuta mitochondria required Mn2+ ion and NADP, thereby indicating the tandem operation of "malic" enzyme and NADPH:NAD transhydrogenase. Incubation of mitochondrial preparations with oxaloacetate resulted in a non-enzymatic decarboxylation reaction. Coupling of malate oxidation with electron transport via the "malic" enzyme and transhydrogenase was demonstrated by polarographic assessment of mitochondrial reduced pyridine nucleotide oxidase activity.  相似文献   

7.
1. An enzyme, which in the presence of NAD(+) and CoA oxidizes malonic semialdehyde to acetyl-CoA, has been purified from an extract of the colourless alga Prototheca zopfii. 2. The purified enzyme has optimum pH7.5, is specific for NAD(+) and requires a thiol compound for maximum activity. 3. The enzyme is inhibited by arsenite, N-ethylmaleimide and urea. 4. The results are discussed in relation to those obtained by other workers with a similar bacterial enzyme, and a possible reaction sequence is proposed.  相似文献   

8.
Malate dehydrogenase may interfere with the assay of NAD malic enzyme, as NADH is formed during the conversion of malate to oxaloacetate. During the present study, two additional effects of malate dehydrogenase were investigated; they are evident only if the malate dehydrogenase reaction is allowed to reach equilibrium prior to initiating the malic enzyme reaction. One of these (Outlaw, Manchester 1980 Plant Physiol 65: 1136-1138) might cause an underestimation of NAD reduction by malic enzyme due to the oxidation of NADH during reversal of the malate dehydrogenase reaction. A second effect may result in overestimation of malic enzyme activity, as Mn2+-catalyzed oxaloacetate decarboxylation causes continuing net NADH formation via malate dehydrogenase. These effects were studied by assaying the activity of a partially purified preparation of Amaranthus retroflexus NAD malic enzyme in the presence or absence of purified NAD malate dehydrogenase.  相似文献   

9.
Two malic enzymes in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extract supernatant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)- or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP) --> pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + CO(2)), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn(2+) being more effective than Mg(2+). The NADP-dependent enzyme is activated by K(+) and low concentrations of NH(4) (+). Both reactions are reversible, as shown by incubation with pyruvate, CO(2), NADH, or NADPH and Mn(2+). The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).  相似文献   

10.
Malate dehydrogenase from Sulfolobus acidocaldarius has been purified 240-fold to apparent electrophoretic homogeneity. The enzyme shows a specific activity of 277 U/mg and crystallizes readily. The relative molecular mass of the native enzyme is estimated as 128,500 by ultracentrifugation. After cross-linking a relative molecular mass of 134,000 is found by sodium dodecyl sulfate gel electrophoresis. Malate dehydrogenase from S. acidocaldarius is composed of four subunits of identical size with a relative molecular mass of 34,000. Active-enzyme sedimentation in the analytical ultracentrifuge indicates that the tetramer is the catalytically active species. Kinetic studies in the direction of oxaloacetate reduction showed a Km for NADH of 4.1 microM and a Km for oxaloacetate of 52 microM. Oxaloacetate exhibits substrate inhibition at higher concentrations, L-malate, NAD and NADP were found to be product inhibitors. The enzymatic activity is inhibited by 2-oxoglutarate but not by the adenosine nucleotides AMP, ADP and ATP. Only low activity is detected in the direction of malate oxidation. Malate dehydrogenase from S. acidocaldarius utilizes both NADH and NADPH to reduce oxaloacetate. The enzyme shows A-side stereospecificity for both nicotinamide dinucleotides.  相似文献   

11.
Reactions catalyzed by NAD-linked malic enzyme from Escherichia coli were investigated. In addition to L-malate oxidative decarboxylase activity (Activity 1) and oxaloacetate decarboxylase activity (Activity 2), the enzyme exhibited oxaloacetate reductase activity (Activity 3) and pyruvate reductase activity (Activity 4). Optimum pH's for Activities 3 and 4 were 4.0 and 5.0, and their specific activities were 1.7 and 0.07, respectively. Upon reaction with N-ethylmaleimide (NEM), Activity 1 decreased following pseudo-first order kinetics. Activity 2 decreased in parallel with Activity 1, while Activities 3 and 4 were about ten-fold enhanced by NEM modification. Modification of one or two sulfhydryl groups per enzyme subunit caused an alteration of the activities. Tartronate, a substrate analog, NAD+, and Mn2+ protected the enzyme against the modification. The Km values for the substrates and coenzymes were not significantly affected by NEM modification. Similarly, other sulfhydryl reagents such as p-hydroxymercuribenzoate (PMB), 5,5'-dithiobis(2-nitrobenzoate) (DTNB), and iodoacetate inhibited the decarboxylase activities and activated the reductase activities to various extents. Modification of the enzyme with PMB or DTNB was reversed by the addition of a sulfhydryl compound such as dithiothreitol or 2-mercaptoethanol. Based on the above results, the mechanism of the alteration of enzyme activities by sulfhydryl group modification is discussed.  相似文献   

12.
1. When [2-(14)C]pyruvate is injected into rats the C3-position of liver glutamate becomes more heavily labelled than the C2-position, thus establishing that oxaloacetate and fumarate are not in equilibrium in rat liver mitochondria in vivo. The amount of disequilibrium was shown to be simply related to the value that the C3-label/C2-label ratio would have were no label recycled. This ratio, z, was calculated for post-absorptive rats in environmental temperatures of 20 degrees and 30 degrees C from determinations of the distribution of label within glutamate 1, 3 and 10min after intravenous injection of [2-(14)C]pyruvate. The values of z (best estimate and range) were 1.65 (1.60-1.69) in rats at 20 degrees C and 2.43 (2.23-2.63) in rats at 30 degrees C. These values of z imply the following rates of interconversion in mitochondria of fumarate and oxaloacetate (in terms of the oxaloacetate-->citrate flux, R) in rats at 20 degrees C: [Formula: see text] and in rats at 30 degrees C: [Formula: see text] 2. The kinetic parameters of malate dehydrogenase and fumarate hydratase and the intramitochondrial concentrations of NAD(+) and NADH under (as far as could be judged) conditions in vivo were collated. From them and the best estimates of R now available were calculated the rates of interconversion of fumarate, malate and oxaloacetate required to give the found values of z. These rates showed that the fumarate hydratase reaction was nearly in equilibrium, but that the malate dehydrogenase reaction was considerably out of equilibrium. The calculations also led to the following conclusions. 3. In livers of rats at 20 degrees and 30 degrees C mitochondrial malate concentrations were respectively about 5 and 1.5 times mean cellular concentrations. 4. Mitochondrial oxaloacetate concentrations were less than 0.2 of the mean cellular concentrations. They were also only 0.65 and 0.55 of the equilibrium concentrations for the malate dehydrogenase reaction in rats at 20 degrees and 30 degrees C respectively. 5. Malate dehydrogenase activity was low because of the very low oxaloacetate concentrations in the mitochondria and the very small fraction of the enzyme complexed with NAD(+), i.e. in each direction one substrate concentration was very sub-optimal.  相似文献   

13.
The presence of high phosphoenolpyruvate carboxykinase (EC 4.1.1.32) activity in mouse islet cytosol has been demonstrated. The enzyme was activated by Mn2+ with a Ka of 100 X 10(-6) mol/l. The mean total activity of the Mn2+-stimulated phosphoenolpyruvate carboxykinase in islet cytosol estimated at 22 degrees C with saturating concentrations of the substrates oxaloacetate and ITP was 146 pmol/min per micrograms DNA. Km was calculated to be 6 X 10(-6) mol/l for oxaloacetate and 140 X 10(-6) mol/l for ITP. The islet phosphoenolpyruvate carboxykinase activity was not increased after starvation of the animals for 48 h. Preincubation of the cytosol at 4 degrees C with Fe2+, quinolinate, ATP, Pi, glucose 6-phosphate, fructose 1,6-bisphosphate, NAD+, NADH, oxaloacetate, ITP, cyclic AMP and Ca2+ had no effect on the enzyme activity. However, preincubation of the cytosol at 37 degrees C with ATP-Mg inhibited the Mn2+-stimulated phosphoenolpyruvate carboxykinase activity progressively with time and in a concentration-dependent manner. A similar but weaker inhibitory effect was observed with p[NH]ppA, whereas p[CH2]ppA, ADP, AMP, adenosine and Pi had no effect. It is tentatively suggested that ATP and p[NH]ppA either by adenylation or otherwise affect the interaction between islet phosphoenolpyruvate carboxykinase and the recently discovered Mr = 29000 protein modulator of the enzyme in such a way - perhaps by causing a dissociation between them - that phosphoenolpyruvate carboxykinase loses its sensitivity to Mn2+ activation.  相似文献   

14.
15.
alpha-Ketoglutarate dehydrogenase has been demonstrated for the first time in cell extracts from the filamentous fungus Aspergillus niger. A minimum protein concentration of 5 mg/ml is necessary for detecting enzyme activity, but a maximum of ca. 0.060 mumol/min per mg of protein is observed only when the protein concentration is above 9 mg/ml. alpha-Ketoglutarate can partly stabilize the enzyme against dilution in the assay system. Neither bovine serum albumin nor a variety of substrates or effectors of the enzyme could stabilize the enzyme against inactivation by dilution. A kinetic analysis of the enzyme revealed Michaelis-Menten kinetics with respect to alpha-ketoglutarate, coenzyme A, and NAD. Thiamine PPi was required for maximal activity. NADH, oxaloacetate, succinate, and cis-aconitate were found to inhibit the enzyme; AMP was without effect. Monovalent cations including NH4+ were inhibitory at high concentrations (greater than 20 mM). The highest enzyme activity was found in rapidly growing mycelia (glucose-NH4+ or glucose-peptone medium). We discuss the possibility that citric acid accumulation is caused by oxaloacetate and NADH inhibition of the alpha-ketoglutarate dehydrogenase of A. niger.  相似文献   

16.
Three alcohol dehydrogenases have been identified in Acinetobacter calcoaceticus sp. strain HO1-N: an NAD(+)-dependent enzyme and two NADP(+)-dependent enzymes. One of the NADP(+)-dependent alcohol dehydrogenases was partially purified and was specific for long-chain substrates. With tetradecanol as substrate an apparent Km value of 5.2 microM was calculated. This enzyme has a pI of 4.5 and a molecular mass of 144 kDa. All three alcohol dehydrogenases were constitutively expressed. Three aldehyde dehydrogenases were also identified: an NAD(+)-dependent enzyme, an NADP(+)-dependent enzyme and one which was nucleotide independent. The NAD(+)-dependent enzyme represented only 2% of the total activity and was not studied further. The NADP(+)-dependent enzyme was strongly induced by growth of cells on alkanes and was associated with hydrocarbon vesicles. With tetradecanal as substrate an apparent Km value of 0.2 microM was calculated. The nucleotide-independent aldehyde dehydrogenase could use either Würster's Blue or phenazine methosulphate (PMS) as an artificial electron acceptor. This enzyme represents approximately 80% of the total long-chain aldehyde oxidizing activity within the cell when the enzymes were induced by growing the cells on hexadecane. It is particulate but can be solubilized using Triton X-100. The enzyme has an apparent Km of 0.36 mM for decanal.  相似文献   

17.
L Zhang  B Ahvazi  R Szittner  A Vrielink  E Meighen 《Biochemistry》1999,38(35):11440-11447
The fatty aldehyde dehydrogenase from the luminescent bacterium, Vibrio harveyi (Vh-ALDH), is unique with respect to its high specificity for NADP(+) over NAD(+). By mutation of a single threonine residue (Thr175) immediately downstream of the beta(B) strand in the Rossmann fold, the nucleotide specificity of Vh-ALDH has been changed from NADP(+) to NAD(+). Replacement of Thr175 by a negatively charged residue (Asp or Glu) resulted in an increase in k(cat)/K(m) for NAD(+) relative to that for NADP(+) of up to 5000-fold due to a decrease for NAD(+) and an increase for NADP(+) in their respective Michaelis constants (K(a)). Differential protection by NAD(+) and NADP(+) against thermal inactivation and comparison of the dissociation constants of NMN, 2'-AMP, 2'5'-ADP, and 5'-AMP for these mutants and the wild-type enzyme clearly support the change in nucleotide specificity. Moreover, replacement of Thr175 with polar residues (N, S, or Q) demonstrated that a more efficient NAD(+)-dependent enzyme T175Q could be created without loss of NADP(+)-dependent activity. Analysis of the three-dimensional structure of Vh-ALDH with bound NADP(+) showed that the hydroxyl group of Thr175 forms a hydrogen bond to the 2'-phosphate of NADP(+). Replacement with glutamic acid or glutamine strengthened interactions with NAD(+) and indicated why threonine would be the preferred polar residue at the nucleotide recognition site in NADP(+)-specific aldehyde dehydrogenases. These results have shown that the size and the structure of the residue at the nucleotide recognition site play the key roles in differentiating between NAD(+) and NADP(+) interactions while the presence of a negative charge is responsible for the decrease in interactions with NADP(+) in Vh-ALDH.  相似文献   

18.
Lactate and malate dehydrogenases (EC 1.1.1.27 and EC 1.1.1.37, respectively) were precipitated with ammonium sulfate, redissolved in 100 mM phosphate buffer, and the kinetic parameters of each enzyme determined. Lactate dehydrogenase: The enzyme preparation had a specific activity of 0.35 μmole NADH oxidized/min/mg protein for pyruvate reduction, and 0.10 μmole NAD reduced/min/mg protein for lactate oxidation. Km values for the substrates and cofactors were as follows: pyruvate = 0.51, mM; lactate = 3.8 mM; NADH = 0.011 mM; and NAD = 0.17 mM. NADPH, NADP, or d(?)-lactate would not replace NADH, NAD, or l(+)-lactate, respectively. The enzyme was relatively stable at 50 C for 45 min, but much less stable at 60 C; repeated freezing and thawing of the enzyme preparation had little effect on LDH activity. Both p-chloromercuribenzoate (p-CMB) and N-ethylmaleimide (NEM) significantly inhibited LDH activity. Polyacrylamide gel electrophoresis demonstrated the presence of at least two LDH isoenzymes in the unpurified enzyme preparation. The molecular weight was estimated at 160,000 by gel chromatography. Malate dehydrogenase: The enzyme preparation had a specific activity of 6.70 μmole NADH oxidized/min/mg protein for oxaloacetate reduction, and 0.52 μmole NAD reduced/ min/mg protein for malate oxidation. Km values for substrates and cofactors were as follows: l-malate = 1.09 mM; oxaloacetate = 0.0059 mM; NADH = 0.017 mM; and NAD = 0.180 mM. NADP and NADPH would not replace NAD and NADH, respectively, d-malate was oxidized slowly when present in high concentrations (>100 mM). Significant substrate inhibition occurred with concentrations of l-malate and oxaloacetate above 40 mM and 0.5 mM, respectively. The enzyme was unstable at temperatures above 40 C, but repeated freezing and thawing of the enzyme preparation had little effect on MDH activity. Only p-CMB inhibited MDH activity. Polyacrylamide gel electrophoresis demonstrated the presence of at least three MDH isoenzymes in the unpurified enzyme preparation, and the molecular weight was estimated at 49,000 by gel chromatography.  相似文献   

19.
The enzyme NAD(+) synthetase (NadE) catalyzes the last step of NAD biosynthesis. Given NAD vital role in cell metabolism, the enzyme represents a valid target for the development of new antimycobacterial agents. In the present study we expressed and purified two putative forms of Mycobacterium tuberculosis NAD(+) synthetase, differing in the polypeptide chain length (NadE-738 and NadE-679). Furthermore, we evaluated several systems for the heterologous expression and large scale purification of the enzyme. In particular, we compared the efficiency of production, the yield of purification, and the catalytic activity of recombinant enzyme in different hosts, ranging from Escherichia coli strains to cultured High Five (Trichoplusia ni BTI-TN-5B1-4) insect cells. Among the systems assayed, we found that the expression of a thioredoxin-NadE fusion protein in E. coli Origami(DE3) is the best system in obtaining highly pure, active NAD(+) synthetase. The recombinant enzyme maintained its activity even after proteolytic cleavage of thioredoxin moiety. Biochemical evidence suggests that the shorter form (NadE-679) may be the real M. tuberculosis NAD(+) synthetase. These results enable us to obtain a purified product for structure-function analysis and high throughput assays for rapid screening of compounds which inhibit enzymatic activity.  相似文献   

20.
4-Hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] has been purified to homogeneity (about 770-fold purification, yield 11.4%) from Pseudomonas ochraceae grown on phthalate. The enzyme has a molecular weight of 160,000 (gel filtration on Bio-Gel A-1.5m), a subunit molecular weight of 26,000 (SDS-PAGE) and an isoelectric point of 5.0 (isoelectric focusing). The enzyme requires divalent metal ions such as Mg2+, Mn2+, Co2+, Zn2+, and Cd2+ for activity. The enzyme actively cleaves 4-carboxy-4-hydroxy-2-oxoadipate, a physiological substrate of the enzyme, to give pyruvate and oxaloacetate, but shows much lower affinity for 4-hydroxy-4-methyl-2-oxoglutarate. 4-Hydroxy-2-oxoglutarate is cleaved at a low rate to pyruvate and glyoxylate. The l-isomers of the substrates are preferentially cleaved rather than the d-isomers as determined polarimetrically. The enzyme reactions are reversible: the equilibrium constants (pH 8.0, 25 C) for the HMG and HG cleavage reactions are about 0.07 and 0.03 M, respectively, whereas no equilibrium is observed with CHA due to oxaloacetate beta-decarboxylase activity associated with the enzyme. The enzyme activity is hardly affected by thiols and thiol reagents. The non-enzymatic cleavage reaction caused by various metal ions has also been studied to examine the mechanistic similarity to the enzymatic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号