首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have sequenced a region of cloned Xenopus laevis ribosomal DNA encompassing the last 24 nucleotides of the external transcribed spacer and the first 275 nucleotides of the 18S gene. The start of the 18S gene was identified by correlating the results obtained from RNA hybridization and fingerprinting with the DNA sequence. This 5' region of 18S rRNA contains five 2'-O-methyl groups and at least six pseudouridine residues. Several of these modified nucleotides are clustered into a relatively short region from nucleotides 99-124. Nucleotides 227-250 constitute a distinctive sequence of 24 consecutive G and C residues. Comparison with the first 160 nucleotides of a yeast 18S gene (25) reveals three blocks of high sequence homology separated by two short tracts where homology is low or absent. The external transcribed spacer sequences diverge widely from within a few nucleotides of the start of the 18S gene.  相似文献   

4.
5.
By direct RNA sequence analysis we have determined the primary structures of both the 5' and 3' domains for rabbit 18S ribosomal RNA. Purified 18S rRNA was labeled in vitro at either its 5' or 3' terminus with 32P, base-specifically fragmented enzymatically and chemically, and the resulting fragments electrophoretically fractionated by size in adjacent lanes of 140 cm long polyacrylamide sequencing gels run in 90% formamide. A phylogenetic comparison of both the mammalian 5' proximal 400 residues and the 3' distal 301 nucleotides with the previously determined yeast and Xenopus laevis 18S rRNA sequence shows extensive conservation interspersed with tracts having little homology. Clusters of G + C rich sequences are present within the mammalian 5' domain which are entirely absent in both the Xenopus laevis and yeast 18S rRNAs. Most base differences and insertions within the mammalian 18S rRNA when compared with yeast or Xenopus rRNA result in an increase in the G + C content of these regions. We have found nucleotide sequence analysis of the ribosomal RNA directly permits detection of both cistron heterogeneities and mapping of many of the modified bases.  相似文献   

6.
M Jarsch  A B?ck 《Nucleic acids research》1983,11(21):7537-7544
The DNA sequence of the spacer (plus flanking) regions separating the 16S rRNA and 23S rRNA genes of two presumptive rDNA operons of the archaebacterium Methanococcus vannielii was determined. The spacers are 156 and 242 base pairs in size and they share a sequence homology of 49 base pairs following the 3' terminus of the 16S rRNA gene and of about 60 base pairs preceding the 5' end of the 23S rRNA gene. The 242 base pair spacer, in addition contains a sequence which can be transcribed into tRNAAla, whereas no tRNA-like secondary structure can be delineated from the 156 base pair spacer region. Almost complete sequence homology was detected between the end of the 16S rRNA gene and the 3' termini of either Escherichia coli or Halobacterium halobium 16S rRNA, whereas the putative 5' terminal 23S rRNA sequence shared partial homology with E. coli 23S rRNA and eukaryotic 5.8S rRNA.  相似文献   

7.
We present the sequence of the nuclear-encoded ribosomal small-subunit RNA from soybean. The soybean 18S rRNA sequence of 1807 nucleotides (nt) is contained in a gene family of approximately 800 closely related members per haploid genome. This sequence is compared with the ribosomal small-subunit RNAs of maize (1805 nt), yeast (1789 nt), Xenopus (1825 nt), rat (1869 nt), and Escherichia coli (1541 nt). Significant sequence homology is observed among the eukaryotic small-subunit rRNAs examined, and some sequence homology is observed between eukaryotic and prokaryotic small-subunit rRNAs. Conserved regions are found to be interspersed among highly diverged sequences. The significance of these comparisons is evaluated using computer simulation of a random sequence model. A tentative model of the secondary structure of soybean 18S rRNA is presented and discussed in the context of the functions of the various conserved regions within the sequence. On the basis of this model, the short base-paired sequences defining the four structural and functional domains of all 18S rRNAs are seen to be well conserved. The potential roles of other conserved soybean 18S rRNA sequences in protein synthesis are discussed.  相似文献   

8.
Gene heterogeneity: a basis for alternative 5.8S rRNA processing   总被引:3,自引:0,他引:3  
S D Smith  N Banerjee  T O Sitz 《Biochemistry》1984,23(16):3648-3652
Two bands of 5.8S rRNA were observed when the total RNA isolated from rat or mouse tissue was separated by electrophoresis on high-resolution polyacrylamide gels under denaturing conditions. The minor form, with a lower mobility, represented 15-35% of the total 5.8S rRNA, depending on the source of the tissue. Sequence analysis and the kinetics of formation showed that this minor form is elongated at the 5' end and is not a precursor. The sequence of the minor form was found to be p(C)CGAUA[CG-, five or six nucleotides longer than the major form. The minor 5.8S rRNA constituent also formed a more stable junction complex with 28S rRNA than the shorter major sequence. The rat DNA sequence that corresponds to the additional nucleotides at the 5' end of 5.8S rRNA has been reported to be -CCGTACG-[Subrahmanyam, C. S., Cassidy, B., Busch, H., & Rothblum, L. I. (1982) Nucleic Acids Res. 10, 3667-3680], a sequence which does not contain the extra adenylic acid residue at position 4 found in the minor form. This suggests that the rodent rRNA genes are heterogeneous and that the insertion of an A residue in the ribosomal precursor RNA can generate an alternate processing site.  相似文献   

9.
J Venema  Y Henry    D Tollervey 《The EMBO journal》1995,14(19):4883-4892
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S rRNA) are transcribed as a single precursor, which is subsequently processed into the mature species by a complex series of cleavage and modification reactions. Early cleavage at site A1 generates the mature 5'-end of 18S rRNA. Mutational analyses have identified a number of upstream regions in the 5' external transcribed spacer (5' ETS), including a U3 binding site, which are required in cis for processing at A1. Nothing is known, however, about the requirement for cis-acting elements which define the position of the 5'-end of the 18S rRNA or of any other eukaryotic rRNA. We have introduced mutations around A1 and analyzed them in vivo in a genetic background where the mutant pre-rRNA is the only species synthesized. The results indicate that the mature 5'-end of 18S rRNA in yeast is identified by two partially independent recognition systems, both defining the same cleavage site. One mechanism identifies the site of cleavage at A1 in a sequence-specific manner involving recognition of phylogenetically conserved nucleotides immediately upstream of A1 in the 5' ETS. The second mechanism specifies the 5'-end of 18S rRNA by spacing the A1 cleavage at a fixed distance of 3 nt from the 5' stem-loop/pseudoknot structure located within the mature sequence. The 5' product of the A1 processing reaction can also be identified, showing that, in contrast to yeast 5.8S rRNA, the 5'-end of 18S rRNA is generated by endonucleolytic cleavage.  相似文献   

10.
We have determined the DNA sequences encoding 18 S ribosomal RNA in man and in the frog, Xenopus borealis. We have also corrected the Xenopus laevis 18 S sequence: an A residue follows G-684 in the sequence. These and other available data provide a number of representative examples of variation in primary structure and secondary modification of 18 S ribosomal RNA between different groups of vertebrates. First, Xenopus laevis and Xenopus borealis 18 S ribosomal genes differ from each other by only two base substitutions, and we have found no evidence of intraspecies heterogeneity within the 18 S ribosomal DNA of Xenopus (in contrast to the Xenopus transcribed spacers). Second, the human 18 S sequence differs from that of Xenopus by approx. 6.5%. About 4% of the differences are single base changes; the remainder comprise insertions in the human sequence and other changes affecting several nucleotides. Most of these more extensive changes are clustered in a relatively short region between nucleotides 190 and 280 in the human sequence. Third, the human 18 S sequence differs from non-primate mammalian sequences by only about 1%. Fourth, nearly all of the 47 methyl groups in mammalian 18 S ribosomal RNA can be located in the sequence. The methyl group distribution corresponds closely to that in Xenopus, but there are several extra methyl groups in mammalian 18 S ribosomal RNA. Finally, minor revisions are made to the estimated numbers of pseudouridines in human and Xenopus 18 S ribosomal RNA.  相似文献   

11.
12.
We have determined the nucleotide sequence of Xenopus borealis 28S ribosomal DNA (rDNA) and have revised the sequence of Xenopus laevis 28S rDNA (Ware et al., Nucl. Acids Res. 11, 7795-7817 (1983)). In the regions encoding the conserved structural core of 28S rRNA (2490 nucleotides) there are only four differences between the two species, each difference being a base substitution. In the variable regions, also called eukaryotic expansion segments (ca. 1630 nucleotides) there are some 61 differences, due to substitutions, mini-insertions and mini-deletions. Thus, evolutionary divergence in the variable regions has been at least 20-fold more rapid than in the conserved core. A search for intraspecies sequence variation has revealed minimal heterogeneity in X. laevis and none in X. borealis. At three out of four sites where heterogeneity was found in X. laevis (all in variable regions) the minority variant corresponded to the standard form in X. borealis. Intraspecies heterogeneity and interspecies divergence in the 28S variable regions are much less extensive than in the transcribed spacers. The 28S sequences are from the same clones that were used previously for sequencing the 18S genes and transcribed spacers. The complete sequences of the 40S precursor regions of the two reference clones are given.  相似文献   

13.
The sequence of the Gyrodactylus salaris Malmberg, 1957, large subunit, or 28S, ribosomal RNA (rRNA) gene has been determined. This gene is the final portion of the Gyrodactylus rRNA gene operon to be sequenced and results in the first complete sequence of all rRNA genes and spacers from a monogenean. The nucleotide sequence was used to predict the secondary structure of the large subunit rRNA, and regions of conserved and variable sequence and structure were identified. The site where the 5' terminus of the 5.8S rRNA binds to a region within the large subunit rRNA was predicted and complements the anticipated interaction of the 3' terminus of the 5.8S with the 5' terminus of the large subunit rRNA. The large subunit gene may be useful in phylogenetic analysis of the Monogenea or Platyhelminthes and comparisons with other eukaryotes. The variable domains C and H may be most suitable for this purpose.  相似文献   

14.
Crude tRNA isolated from rat liver by the method of Rogg et al. (Biochem. Biophys. Acta 195, 13-15 1969) contains N6-dimethyladenosine (m6-2A) and was therefore fractionated in order to identify the m6-2A-containing RNAs. A unique species of RNA was purified which contained all the m62A present in the crude tRNA. Sequence analysis by postlabeling with gamma-32p-ATP and polynucleotide kinase revealed that this RNA represents the 32 nucleotides AAGGUUUC(C)U GUAGGUGm62Am62ACCUGCGGAAGGAUC from position 5 to 36 of the 3' terminus of ribosomal 18S RNA. The 36 nucleotide long sequence from the 3' end of rat liver 18S rRNA exhibits extensive homology with the corresponding sequence of E. coli 16S rRNA and with the 21 nucleotide long 3' terminal sequence so far known from Saccharomyces carlsbergensis 17S rRNA. A heterogeneity in this sequence provides the first evidence on the molecular level for the existence of (at least) two sets of redundant ribosomal 18S RNA genes in the rat.  相似文献   

15.
16.
17.
Summary We present the sequence of the nuclearencoded ribosomal small-subunit RNA from soybean. The soybean 18S rRNA sequence of 1807 nucleotides (nt) is contained in a gene family of approximately 800 closely related members per haploid genome. This sequence is compared with the ribosomal small-subunit RNAs of maize (1805 nt), yeast (1789 nt),Xenopus (1825 nt), rat (1869 nt), andEscherichia coli (1541 nt). Significant sequence homology is observed among the eukaryotic small-subunit rRNAs examined, and some sequence homology is observed between eukaryotic and prokaryotic small-subunit rRNAs. Conserved regions are found to be interspersed among highly diverged sequences. The significance of these comparisons is evaluated using computer simulation of a random sequence model. A tentative model of the secondary structure of soybean 18S rRNA is presented and discussed in the context of the functions of the various conserved regions within the sequence. On the basis of this model, the short basepaired sequences defining the four structural and functional domains of all 18S rRNAs are seen to be well conserved. The potential roles of other conserved soybean 18S rRNA sequences in protein synthesis are discussed.  相似文献   

18.
19.
20.
Reticulocyte lysates contain ribosome-bound and free populations of 5S RNA. The free population is sensitive to nuclease cleavage in the internal loop B, at the phosphodiester bond connecting nucleotides A54 and A55. Similar cleavage sites were detected in 5S rRNA in 60S subunits and 80S ribosomes. However, 5S rRNA in reticulocyte polysomes is insensitive to cleavage unless ribosomes are salt-washed. This suggests that a translational factor protects the backbone surrounding A54 from cleavage in polysomes. Upon nuclease treatment of mouse 60S subunits or reticulocyte lysates a small population of ribosomes released its 5S rRNA together with ribosomal protein L5. Furthermore, rRNA sequences from 5.8S, 28S and 18S rRNA were released. In 18S rRNA the sequences mainly originate from the 630 loop and stem (helix 18) in the 5' domain, whereas in 28S rRNA a majority of fragments is derived from helices 47 and 81 in domains III and V, respectively. We speculate that this type of rRNA-fragmentation may mimic a ribosome degradation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号