首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— Slices from various regions of rat brain, incubated at 25°C, rapidly accumulate [3H]GABA from the surrounding medium until after 60min tissue:medium ratios as high as 300 may be achieved. Kinetic analysis has demonstrated two distinct uptake systems for GABA in all the brain regions examined. One system has a relatively high substrate affinity ( Km = 1.2 ± 10-5 M) while the other has a lower affinity ( Km = 4 ± 10-4 M). Studies at low GABA concentration (5 ± 10-8 M), as well as estimates of maximum velocities, have shown that the distribution of the high affinity uptake system is heterogeneous. Cortex, hypothala mus, midbrain and hippocampus have relatively high uptake rates while the striatum, cerebellum and pons and medulla have a lower uptake rate. Maximum velocities for the low affinity uptake system show much less regional variation.
Lithium, either added to the incubation medium or fed to rats, had no effect on the uptake of GABA by cortical slices.  相似文献   

2.
§-Aminolaevulinic acid (§-ALA) is an omega amino acid which can be considered as an analogue of γ-aminobutyric acid (GABA). We have examined the effect of §-ALA on [3H]GABA uptake and release in the synaptosome fraction of rat cerebral cortex and report: (1) High concentrations of §-ALA (0.75-5 mM) stimulated [3H]GABA release very markedly, the stimulation with 1mM and 5mM-§-ALA exceeding the maximum obtainable with unlabelled GABA; (2) Low concentrations of §-ALA (0.1-0.5 mM) produced little stimulation of [3H]GABA efflux, less than that produced by similar concentrations of unlabelled GABA; (3) 0.1 mM-§-ALA reduced the stimulation of [3H]GABA efflux elicited by 55 mM-K+ and the combination of 1 mM-§-ALA and 55mM-K+ produced a lower stimulation of efflux than 1 mM-§-ALA alone; (4) §-ALA inhibits [3H]GABA uptake in a linearly competitive fashion and inhibition is maximal at 0.5 mM-§-ALA. These results are discussed in relation to the neuronal high affinity GABA transport mechanism and inhibition of the synaptosomal Na+ and K+ -dependent ATPase. It is also postulated that §-ALA increases the chloride conductance of the synaptosomal membrane, possibly by acting on presynaptic GABA receptors.  相似文献   

3.
Abstract— The spontaneous efflux of [3H]GABA and its metabolites from the frog retina has been studied. The efflux of radioactivity was multiphasic in the presence or absence of amino-oxyacetic acid (AOAA), an inhibitor of GABA metabolism, and was not affected by light or dark adaptation.
Strong retention of radioactivity was evident in the presence of AOAA, about 90% of the label remaining in the tissue after 4 h superfusion. Under these conditions, increases in the rate of release of radioactivity were evoked by electrical stimulation, 40 m m -potassium. unlabelled GABA (5 m m ), ouabain (5 × 10−5 m ) and the absence of calcium. The amount of [3H]GABA released by electrical stimulation was not markedly calcium dependent, whereas the response to 40 m m -potassium was reduced by 96% in the absence of calcium.  相似文献   

4.
Abstract— Slices of rat cerebral cortex were labelled by incubation with [3H]γ-aminobutyric acid (GABA) and homogenized in isotonic sucrose. The subcellular distributions of endogenous GAB A, [3H]GABA and glutamate decarboxylase (GAD) were studied by density gradient centrifugation. The subcellular distributions of the labelled and endogenous amino acid were remarkably similar, indicating that [3H]GABA is taken up into the endogenous GABA pool. About 40 per cent of both endogenous and [3H]GABA were recovered in particles which were tentatively identified as synaptosomes from their equilibrium density and sensitivity to osmotic shock. In slices labelled with [3H]GABA and [14C]α-aminoisobutyric (AIB) acid, significantly more [3H]GABA was recovered in paniculate fractions than [14C]AIB. About 80 per cent of the enzyme GAD was also recovered in the same particle fractions which contained [3H]GABA and endogenous GABA. Evidence is presented which suggests that a loss of particle-bound GABA occurs during subcellular fractionation procedures.  相似文献   

5.
—The concentrations of taurine and GABA were determined in isolated mouse brain synaptosomes incubated in Krebs-Ringer phosphate medium (pH 7·4). The concentration of GABA gradually decreased during incubation, but that of taurine remained approximately unchanged. In the presence of chlorpromazine the amount of GABA in the synaptosomes increased, but the efflux and influx of GABA were slightly reduced. The content and efflux of both taurine and GABA increased in electrically stimulated synaptosomes, and the influx of taurine, GABA and glutamate into the synaptosomes similarly increased. All three amino acids are taken up by the synaptosomes through at least two mechanisms: low-affinity and high-affinity. In the high-affinity system the Km values were 33 μm for taurine, 24 μm for GABA and 68 μm for glutamate, and in the low-affinity one 1·1 mil, 0·9 mm and 1·2mm , respectively. The influx capacity (Vmax) was highest for glutamate, second highest for GABA and lowest for taurine.  相似文献   

6.
Each of the four convulsants used significantly influenced the release of [3H]-GABA from brain slices, without affecting [3H]GABA uptake. Bicuculline (10?5M, but not 10-fold higher or lower concentrations) potentiated the electrically evoked release of [3H]GABA but not the resting release, whereas metrazol (10?4 to 10?6 M) was found to inhibit resting but not electrically evoked release. Strychnine (10?4 and 10?5 M) and picro-toxin (10?4 M) inhibited electrically evoked release.  相似文献   

7.
EFFECT OF γ-AMINOBUTYRIC ACID ON BRAIN SEROTONIN AND CATECHOLAMINES   总被引:1,自引:0,他引:1  
—Intraperitoneal injections of GABA (5 mg/kg) to rats lowered the level of norepinephrine in brain, heart and spleen but not suprarenals and raised that of serotonin in brain. Changes of these monoamines were most pronounced in the hypothalamic region after 20min. A reduction of hypothalamic norepinephrine was also observed 15min following the intracarotid administration of 0·5 mg/kg of GABA. In these experiments there was a concomitant increase in the level of free GABA in the anterior portion of the ventral hypothalamus. Brain dopamine level and 5-hydroxytryptophan decarboxylase, dihydroxyphenylalanine decarboxylase and monoamine oxidase activities were not affected. The 20 per cent increase of endogenous GABA observed in the midbrain 30 min following the administration of amino-oxyacetic acid was accompanied by a sharp fall in norepinephrine level (39 per cent) and an increase in serotonin (20 per cent). In in vitro studies 10–300 μg/ml of GABA were shown to release norepinephrine from cortical and hypothalamic slices, and to inhibit serotonin release without affecting 5-hydroxytryptophan uptake and to have no effect on the release of dopamine from slices of the region of the corpus striatum nor on the activity of the enzymes mentioned. Subcellular studies showed that the particulate:supernatant ratio for norepinephrine was reduced from a control value of 2·04 to 1·75 and that of serotonin was raised from 2·8 to 3·5. Following pretreatment with iproniazid, GABA reduced the raised level of brain norepinephrine to a greater extent than reserpine but not as intensively as amphetamine. The results obtained suggest that these monoamines may be involved in the mechanisms underlying the action of GABA in brain and that the effect of GABA on brain monoamines may be of certain significance in synaptic events.  相似文献   

8.
EFFECTS OF AMINO-OXYACETIC ACID ON [3H]GABA UPTAKE BY RAT BRAIN SLICES   总被引:1,自引:0,他引:1  
Abstract— The effect of amino-oxyacetic acid on the uptake of [3H]GABA by rat brain slices was studied. When added simultaneously with [3H]GABA, amino-oxyacetic acid had no significant effect on [3H]GABA uptake. However, preincubation of brain slices with amino-oxyacetic acid prior to addition of [3H]GABA produced inhibition of uptake, which increased with longer duration of preincubation. The inhibitory effect of amino-oxyacetic acid was maximal at 2 mM concentration and concentrations sufficient to inhibit significantly GABA:glutamate transaminase (10--6 M) had no effect on [3H]GABA uptake. D-Cycloserine and β-hydrazino-propionic acid also inhibited [3H]GABA uptake, but the amounts required were considerably in excess of those needed to inhibit GABA:glutamate transaminase. 4-Deoxypyridoxine inhibited [3H]GABA uptake, whether given in vivo or in vitro , and the inhibitory effect of amino-oxyacetic acid was reversed with pyridoxine. GABA transport appears to be dependent on pyridoxal phosphate and interference with this function of the vitamin is suggested as the basis for the inhibitory effect of amino-oxyacetic acid on [3H]GABA uptake.  相似文献   

9.
10.
The release of [3H]GABA induced by elevated extracellular potassium (K)o, from thin rat brain cortex slices, has been compared with that of [3H]noradrenaline ([3H]NA), released by the same procedures, both from normal slices, and from slices pre-treated with reserpine and nialamide, [3H]NA being predominantly a vesicular component in the former situation, and a soluble substance in the latter one. 46 mM-(K)o released considerably more [3H]NA from normal than from drug-treated slices, while the release of GABA was about two thirds of the latter. When 4min ‘pulses’ of increasing concentrations of potassium were applied, it was observed that the release of GABA and of [3H]NA from drug-treated slices increased in proportion to (K)o, up to 36-46 mM and then declined considerably with higher (K)o. The dependency of potassium-induced release on the concentration of calcium in the medium, indicated that release of [3H]NA from normal slices was proportional to calcium up to 1.5-2 mM, while that of [3H]NA from drug-treated slices increased up to 0.5 mM-Calcium, and then declined with higher concentrations. GABA release also increased up to 0.5 mM-calcium, but no further changes were observed at higher concentrations. The calcium antagonist D-600 inhibited high (K)o-induced release of [3H]NA from normal slices to a greater extent than that of [3H]GABA or of [3H]NA from drug-treated slices. These results, in which elevated (K)o-induced release of [3H]GABA resembles considerably that of soluble NA, but differs from that of NA present in synaptic vesicles, suggest that release of [3H]GABA also occurs from the soluble cytoplasmic compartment, and that the partial calcium requirement that is found is unrelated to that of transmitter secretion. These findings are also a further indication of the lack of specificity of elevated (K)o as a stimulus for inducing transmitter secretions.  相似文献   

11.
12.
Abstract— The binding of [3H]muscimol, a potent GABA agonist, to crude synaptic membranes prepared from rat brain was studied using a filtration method to isolate membrane-bound ligand. Specific binding was found to be saturable and occurred to two binding sites of K d5 5 and 30 n m . Binding was Na+-independent and enhanced by both freezing and Triton treatment. Regional and subcellular distribution studies and pharmacological characterization of specific [3H]muscimol binding are consistent with binding to the synaptic GABA receptor.  相似文献   

13.
Abstract— The loss of GABA, norepinephrine and serotonin and the uptake of GABA (in the presence of 1 mM-GABA) and the effect of GABA on the loss of norepinephrine and serotonin were investigated in rat midbrain slices incubated in media of various compositions. In a medium of low Na+ concentration the loss of serotonin from incubated slices was markedly inhibited while that of norepinephrine and GABA was significantly increased. Conversely the most pronounced loss of serotonin from slices was observed on the addition of ouabain to a medium of a balanced ionic composition. Whereas the loss of serotonin from slices increased in a medium of high K+ content, it was significantly reduced after 45 min incubation in a high K+-low Na+ medium. In all the modified media used, a significant loss of norepinephrine was observed while that of GABA was not affected by the omission of Ca2+ and was slightly reduced in the absence of K+. GABA enhanced the loss of norepinephrine and inhibited that of serotonin in a high-K+ medium and in one with a balanced ionic composition. A deficiency of Na+ in the medium had a differential effect on the loss of norepinephrine and serotonin similar to that observed with 1 mM-GABA. These results suggest that Na+ may be of crucial importance in the release of serotonin from midbrain slices and that an enhancement of the Na+ extrusion mechanism at the synaptosomal level may be involved in the effect of GABA on brain monoamines.  相似文献   

14.
—The effect of short (4–6 min)‘pulses’ of elevated extracellular potassium ions K0, in the 10–50 mm range, on the efflux of [3H]norepinephrine [3H]NE) and [14C]α-aminoisobutyrate (AIB) has been studied in a superfused neocortical thin slice system. At all the concentrations tested high K0 increases the efflux of both NE and AIB, although thc effects on the former are greater. In the absence of calcium ions, or in the presence of 8 mm -MnCl2, the potassium-stimulated release of both NE and AIB is severely depressed. However, potassium induced NE release is proportional to extracellular calcium ions in the 0–1.5 mm range, while that of AIB does not continue to increase above 0.2 mm -calcium. This permissive role of calcium in amino acid efflux is interpreted as due to changes in the inactivation of membrane sodium conductance.  相似文献   

15.
Abstract— It has been reported that the release of GABA by high K+ is Ca2+-dependent while release induced by veratridine or electrical stimulation has been frequently found to be independent of Ca2+. To see the source of Ca2+-dependent and independent release of GABA, cortical slices which had accumulated [3H]GABA were exposed to 50 mm -K+ or 50 μm -veratridine for 48min. In the presence of Ca2+ the 2 agents released approx the same amount of [3H]GABA but tetrodotoxin (TTX) abolished release induced only by veratridine, while omission of Ca2+ reduced release induced only by 50mm -K+. Pre-exposure of the slices for 48min to 50mm -K+ in the presence of Ca2+ reduced the second release by 50mm -K+ by 77% and that by veratridine by 74%, suggesting that in the presence of Ca2+ the 2 depolarizing agents release [3H]GABA from the same pool. Pre-exposure to 50mm -K+ in the absence of Ca2+ reduced the second release by 50mm -K+ or by veratridine only by 37 and 27% respectively, indicating that most of the reduction in release was the result of a depletion of releasable [3H]GABA stores. The second exposure to 50mm -K+ in the absence of Ca2+ reduced the evoked release further, while exposure to veratridine in the absence of Ca2+, after depletion of the stores, enhanced release 2.7 times. Electrical stimulation (64 Hz, 2 ms, 40 mA, alternating polarity) during 24min in the presence of Ca” caused an initial 5-fold increase in efflux, which declined subsequently. In the absence of Ca2+, instead of a rapid increase, a slow but smaller increase in the efflux of [3H]GABA was found. TTX almost completely abolished the electrically evoked increase in release. Pre-treatment with 50mm -K+ reduced the electrically evoked release by 94% but electrical stimulation in the absence of Ca2+ after depletion of releasable stores doubled this release. Results suggest that in the presence of Ca2+, high K+, veratridine and electrical stimulation release [3H]GABA from the same Ca2+-dependent store, but in the absence of Ca2+ veratridine and electrical stimulation enhance the release from a Ca2+-independent store, probably as a result of an increased influx of Na+.  相似文献   

16.
The spontaneous efflux of [3H]GABA from the satellite glial cells of rat dorsal root ganglia and the efflux evoked by 64 mM-K+ were studied in the presence of 10-5M-amino-oxyacetic acid and found not to be affected by 10-4M-D 600 or by elevated (9.6mM) Ca2+ in the absence of Mg2+. [3H]GABA efflux was increased by replacing sodium ions in the washing medium by choline ions and 64 mM-K+ failed to increase the efflux further. The drugs veratridine (10-6 and 10-4M) and batrachotoxin (10-8 and 10-6 M) failed to alter the spontaneous efflux of [3H]GABA from the glial cells. A variety of compounds, including amino acids, a GABA analogue and a GABA antagonist were tested for their ability to affect [3H]GABA efflux. The results indicated that compounds which inhibit GABA uptake into glial cells were also able to stimulate [3H]GABA efflux from these cells. The results are discussed with reference to possible mechanisms involved in the release of GABA from glial cells.  相似文献   

17.
Abstract— The uptake of [3H]norepinephrine ([3H]NE) and [3H]serotonin ([3H]5-HT) by rat brain synaptosomes is reduced as a result of pretreatment of the synaptosomes with phospholipase C (EC 3.1.4.3) or phospholipase A2 (EC 3.1.1.4). This effect is not due to inhibition of the Na+-K+-ATPase but rather is caused by hydrolysis of neuronal membrane phospholipids, mainly phosphatidylcholine, which seem to be important to the uptake.  相似文献   

18.
Abstract— [3H]β-Alanine was accumulated by frog spinal cord slices by two transport components with estimated Km values of 31 M ('high-affinity') and 11 HIM ('low affinity') respectively. The high affinity uptake exhibited sodium ion and energy dependence, temperature sensitivity, had a very low Vmax (10.4 nmol/g/min) compared to GABA and glycine, was competitively inhibited by GABA (Kt 2 M), and was significantly reduced by the presence of glycine and of taurine in the incubating medium.
When slices preloaded with [3H]β-alanine were superfused with medium containing depolarizing concentrations of potassium ions, there was a small, but consistent, increase in [3H]β-alanine efflux: 1.4 times prestimulation rates in 40 mM potassium. When the superfusate was altered by omission of calcium and addition of concentrations of magnesium (10 mm), manganese (1 mM), and cobalt (1 mM) ions sufficient to block reflex transmission in the isolated in vitro frog cord, the potassium-evoked release was not blocked. Release was decreased by lanthanum ions (1 mM). Release of [3H]GABA and [3H]glycine in parallel experiments was inhibited by magnesium, manganese, cobalt and lanthanum. Veratridine significantly increased the release of [3H]GABA and [3H]glycine but not of [3H]β-alanine.
These observations demonstrate the non-specificity of β-alanine uptake and the unconventional nature of the calcium-dependence of β-alanine release and therefore do not lend support to the hypothesis that β-alanine functions as a neurotransmitter in frog spinal cord.  相似文献   

19.
Synaptosomes prepared from guinea-pig cerebral cortex were suspended in a medium containing [32P]orthophosphate and subjected to electrical stimulation. When the synaptosomal phospholipids were subsequently separated, the most highly labelled was phosphatidic acid and electrical stimulation over a 10 min period increased incorporation of 32P1 into this lipid. Stimulated synaptosomes were osmotically lysed and subsynaptosomal fractions isolated. The electrically stimulated increase in phosphatidic acid labelling was localized in a fraction enriched in synaptic vesicles. This phospholipid effect was not merely a reflection of an increased specific radioactivity of synaptosomal ATP, due to the electrically stimulated increase in respiration. The time course of the phosphatidic acid effect suggests that it is synchronous with release of transmitter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号