首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In experiments on 8 rabbits and 12 rats changes in electrograms of the visual cortex of alert animals were studied under photic stimulation in conditions of pharmacological action on monoamine (MA) brain systems. After injection of MA precursors (5-oxitriptophane and d, 1-dioxiphenylalanine) following phenomena were observed: a) decrease of the amplitude of the averaged evoked potentials to rhythmic photic stimuli (1-20 imp. sec.-1); b) an enhancement of fast (15-25 Hz) oscillations in the cortical spontaneous electrical activity and weakening and modification of the effects of the blockader of synthesis of MA-alpha-methyl-dioxiphenylalanine. Under light stimulation potentiation of MA precursors effects was observed in the frequency spectra of electrocorticograms. In the same conditions the specificity of action of cathecholamines precursor was revealed in the form of an increase of power of rhythms of 5-7 Hz and it; decrease in 2-3 Hz. Possible mechanisms of the revealed phenomena are discussed.  相似文献   

2.
Tang J  Fu ZY  Wu FJ 《生理学报》2010,62(5):469-477
The effects of sound duration and sound pattern on the recovery cycles of inferior collicular (IC) neurons in constant frequency-frequency modulation (CF-FM) bats were explored in this study. Five leaf-nosed bats, Hipposideros armiger (4 males, 1 female, 43-50 g body weight), were used as subjects. The extracellular responses of IC neurons to paired sound stimuli with different duration and patterns were recorded, and the recovery was counted as the ratio of the second response to the first response. Totally, 169 sound-sensitive IC neurons were recorded in the experiment. According to the interpulse interval (IPI) of paired sounds when neurons reached 50% recovery (50% IPI), the recovery cycles of these IC neurons were classified into 3 types: fast recovery (F, the 50% IPI was less than 15 ms), short recovery (S, the 50% IPI was between 15.1 and 30 ms) and long recovery (L, the 50% IPI was more than 30 ms). When paired CF stimuli with 2 ms duration was used, the ratio of F neurons was 32.3%, and it decreased to 18.1% and 18.2% respectively when 5 and 7 ms CF stimuli were used. The ratios of S and L neurons were 41.5%, 33.7%, 29.1% and 26.2%, 48.2%, 52.7% respectively when 2, 5 and 7 ms CF stimuli were used. The average 50% IPI determined after stimulation with paired 2 ms, 5 ms and 7 ms CF sounds were (30.2 ± 27.6), (39.9 ± 29.1) and (49.4 ± 34.7) ms, respectively, and the difference among them was significant (P< 0.01). When the stimuli of paired 2 ms CF sounds were shifted to paired 2 ms FM sounds, the proportion of F, S and L neurons changed from 32.3%, 41.5%, 26.2% to 47.7%, 24.6%, 27.7%, respectively, and the average 50% IPI decreased from (30.2 ± 27.6) to (23.9 ± 19.0) ms (P< 0.05, n = 65). When paired 5+2 ms CF-FM pulses were used instead of 7 ms CF sounds, the proportion of F, S and L neurons changed from 18.2%, 29.1%, 52.7% to 29.1%, 27.3%, 43.6%, respectively, and the average 50% IPI decreased from (49.4 ± 34.7) to (36.3 ± 29.4) ms (P< 0.05, n = 55). All these results suggest that the CF and FM components in echolocation signal of CF-FM bats play different roles during bats' hunting and preying on. The FM component of CF-FM signal presenting in the terminal phase can increase the number of F type neurons and decrease the recovery cycles of IC neurons for processing high repetition echo information, which ensures the bat to analyze the target range and surface texture more accurately.  相似文献   

3.
电刺激蝙蝠小脑对中脑上丘神经元听反应的影响   总被引:2,自引:0,他引:2  
实验在23只成年中华鼠耳蝠(Myolischinensis)上进行。使用常规电生理学方法,观察了电刺激小脑对上丘神经元听反应的影响。在所观察的171个上丘神经元中,有116个(占67.84%)神经元听反应受到影响,其中72个(占42.11%)表现为抑制效应,44个(占25.73%)为易化效应。刺激小脑对上丘神经听反应的影响是双侧的。抑制或易化程度与电刺激强度、声刺激强度以及声、电刺激间隔有关。结果提示,小脑可以对上丘神经元听反应进行调制,这种调制作用可能是小脑调控回声定位过程中听觉-运动的中枢机制之一。  相似文献   

4.
Controversies exist regarding objective documentation of fatigue development with low-force contractions. We hypothesized that non-exhaustive, low-force muscle contraction may induce prolonged low-frequency fatigue (LFF) that in the subsequent recovery period is detectable by electromyography (EMG) and in particular mechanomyography (MMG) during low-force rather than high-force test contractions. Seven subjects performed static wrist extension at 10% maximal voluntary contraction (MVC) for 10 min (10%MVC10 min). Wrist force response to electrical stimulation of extensor carpi radialis muscle (ECR) quantified LFF. EMG and MMG were recorded from ECR during static test contractions at 5% and 80% MVC. Electrical stimulation, MVC, and test contractions were performed before 10%MVC10 min and at 10, 30, 90 and 150 min recovery. In spite of no changes in MVC, LFF persisted up to 150 min recovery but did not develop in a control experiment omitting 10%MVC10 min. In 5% MVC tests significant increase was found in time domain of EMG from 0.067+/-0.028 mV before 10%MVC10 min to 0.107+/-0.049 and 0.087+/-0.05 mV at 10 and 30 min recovery, respectively, and of the MMG from 0.054+/-0.039 ms(-2) to 0.133+/-0.104 and 0.127+/-0.099 ms(-2), respectively. No consistent changes were found in 80% MVC tests. In conclusion, non-exhaustive low-force muscle contraction resulted in prolonged LFF that in part was identified by the EMG and MMG signals.  相似文献   

5.
High-frequency potential oscillations in the range of 300–900 Hz have recently been shown to concur with the primary response (N20) of the somatosensory cortex in awake humans. However, the physiological mechanisms of the high-frequency oscillations remained undetermined. We addressed the issue by analyzing magnetic fields during wakefulness and sleep over the left hemisphere to right median nerve stimulation with a wide bandpass (0.1–2000 Hz) recording with subsequent high-pass (> 300 Hz) and low-pass (< 300 Hz) filtering. With wide bandpass recordings, high-frequency magnetic oscillations with the main signal energy at 580–780 Hz were superimposed on the N20m during wakefulness. Isofield mapping at each peak of the high-pass filtered and isolated high-frequency oscillations showed a dipolar pattern and the estimated source for these peaks was the primary somatosensory cortex (area 3b) very close to that for the N20m peak. During sleep, the high-frequency oscillations showed dramatic diminution in amplitude while the N20m amplitude exhibited a moderate increment. This reciprocal relation between the high-frequency oscillations and the N20m during a wake-sleep cycle suggests that they represent different generator substrates. We speculate that the high-frequency oscillations represent a localized activity of the GABAergic inhibitory interneurons of layer 4, which have been shown in animal experiments to respond monosynaptically to thalamo-cortical input with a high-frequency (600–900 Hz) burst of short duration spikes. On the other hand, the underlying N20m represents activity of pyramidal neurons which receive monosynaptic excitatory input from the thalamus as well as a feed-forward inhibition from the interneurons.  相似文献   

6.
通常采用恒定电脉冲间隔的高频刺激(high-frequency stimulation,HFS),进行深部脑刺激治疗帕金森氏症等运动障碍疾病.为了开发适用于不同脑疾病治疗的新刺激模式,近年来脉冲间隔(inter-pulse-interval,IPI)变化的变频刺激模式受到关注.已有研究表明,即使具有相同的平均电脉冲频率,变频刺激与恒频刺激的治疗效果也不同.我们推测,变频刺激的短小IPI变化就足以改变HFS对于神经元的作用.为了验证此推测,本文在大鼠海马CA1区锥体神经元的输入轴突纤维上交替施加恒频刺激(100或133 Hz,即IPI=10 ms或7.5 ms)和随机变频刺激(100~200 Hz,即IPI=5~10 ms,平均频率为133 Hz),记录并分析刺激下游神经元群体的诱发电位,用于定量评价神经元对于恒频和变频刺激的响应.实验结果表明,持续的恒频刺激使得神经元的响应从最初的同步发放形成的群峰电位(population spike,PS)转变为非同步的动作电位发放(即单元锋电位).但是,当刺激切换为变频模式时,却又可以诱发神经元群体同步产生动作电位,重新形成PS波.并且,变频刺激诱发的PS幅值和神经元发放的同步程度可达基线的单脉冲刺激诱发波的水平.但是,PS的发生率只有脉冲刺激频率的7%左右,表明在持续的变频刺激时,多个脉冲累积的作用才能诱发这种同步的神经元发放.而且PS的出现与前导IPI的长度之间存在一定关系.神经元的轴突和突触等结构对于高频刺激的非线性响应可能是变频刺激诱发同步活动的原因.这些结果表明,变频刺激序列中短小的间隔变化可以产生与恒定间隔不同的调控作用.本文的结果对于揭示脑刺激的作用机制,促进新型刺激模式的开发及其在不同类型脑疾病治疗中的应用具有重要意义.  相似文献   

7.
In experiments with stimulation of emotiogenic zones (lateral and medial hypothalamus, raphe nuclei), as a conditioning agent, a study was made of summary responses of the pyramidal tract to electrical stimulation of the sensorimotor cortex in immobilized and freely moving rats. The responses exhibited a positive early direct P-component (mean latency 0.8 +/- 0.3 ms) and a late synaptic N-component (mean latency 1.8 +/- 0.5). Reduction of the N-component amplitude was observed during stimulation of the lateral hypothalamus, and its enhancement during stimulation of the medial hypothalamus. Stimulation of the raphe nuclei produced variable, statistically non-significant changes. The experiments have shown that the identified pyramidal neurones tend to reciprocal reactions during stimulation of positive and negative emotiogenic structures. Inhibitory and excitatory influences of the respectively positive and negative emotiogenic structures on pyramidal neurones are due to indirect modulating actions on presynaptic structures.  相似文献   

8.
Hypoventilation, as one of ventilatory disorders, decreases the electrical stability of the heart similarly as ischemia. If preconditioning by short cycles of ischemia has a cardioprotective effect against harmful influences of a prolonged ischemic period, then preconditioning by hypoventilation (HPC) can also have a similar effect. Anesthetized rats (ketamine 100 mg/kg + xylasine 15 mg/kg i.m., open chest experiments) were subjected to 20 min of hypoventilation followed by 20 min of reoxygenation (control group). The preconditioning (PC) was induced by one (1PC), two (2PC) or three (3PC) cycles of 5-min hypoventilation followed by 5-min reoxygenation. The electrical stability of the heart was measured by a ventricular arrhythmia threshold (VAT) tested by electrical stimulation of the right ventricle. Twenty-minute hypoventilation significantly decreased the VAT in the control and 1PC groups (p<0.05) and non-significantly in 2PC vs. the initial values. Reoxygenation reversed the VAT values to the initial level only in the control group. In 3PC, the VAT was increased from 2.32+/-0.69 mA to 4.25+/-1.31 mA. during hypoventilation (p<0.001) and to 4.37+/-1.99 mA during reoxygenation (p<0.001). It is concluded that cardioprotection against the hypoventilation/ reoxygenation-induced decrease of VAT proved to be effective only after three cycles of HPC.  相似文献   

9.
Abstract: The release of adenosine and ATP evoked by electrical field stimulation in rat hippocampal slices was investigated with the following two patterns of stimulation: (1) a brief, high-frequency burst stimulation (trains of stimuli at 100 Hz for 50 ms applied every 2 s for 1 min), to mimic a long-term potentiation (LTP) stimulation paradigm, and (2) a more prolonged (3 min) and low-frequency (5 Hz) train stimulation, to mimic a long-term depression (LTD) stimulation paradigm. The release of ATP was greater at a brief, high-frequency burst stimulation, whereas the release of [3H]adenosine was slightly greater at a more prolonged and low-frequency stimulation. To investigate the source of extracellular adenosine, the following two pharmacological tools were used; α,β-methylene ADP (AOPCP), an inhibitor of ecto-5′-nucleotidase, to assess the contribution of the catabolism of released adenine nucleotides as a source of extracellular adenosine, and S-(4-nitrobenzyl)-6-thioinosine (NBTI), an inhibitor of adenosine transporters, to assess the contribution of the release of adenosine, as such, as a source of extracellular adenosine. At low-frequency stimulation, NBTI inhibited by nearly 50% the evoked outflow of [3H]adenosine, whereas AOPCP inhibited [3H]adenosine outflow only marginally. In contrast, at high-frequency stimulation, AOPCP inhibited by 30% the evoked release of [3H]adenosine, whereas NBTI produced a 40% inhibition of [3H]adenosine outflow. At both frequencies, the kinetics of evoked [3H]adenosine outflow was affected in different manners by AOPCP and NBTI; NBTI mainly depressed the rate of evoked [3H]adenosine outflow, whereas AOPCP mainly inhibited the later phase of evoked [3H]adenosine accumulation. These results show that there is a simultaneous, but quantitatively different, release of ATP and adenosine from rat hippocampal slices stimulated at frequencies that can induce plasticity phenomena such as LTP (100 Hz) or LTD (5 Hz). The source of extracellular adenosine is also different according to the frequency of stimulation; i.e., at a brief, high-frequency stimulation there is a greater contribution of released adenine nucleotides for the formation of extracellular adenosine than at a low frequency with a more prolonged stimulation.  相似文献   

10.
Congestive heart failure (CHF) predisposes to ventricular fibrillation (VF) in association with electrical remodeling of the ventricle. However, much remains unknown about the rate-dependent electrophysiological properties in a failing heart. Action potential properties in the left ventricular subepicardial muscles during dynamic pacing were examined with optical mapping in pacing-induced CHF (n=18) and control (n=17) rabbit hearts perfused in vitro. Action potential durations (APDs) in CHF were significantly longer than those observed for controls at basic cycle lengths (BCLs)>1,000 ms but significantly shorter at BCLs<400 ms. Spatial APD dispersions were significantly increased in CHF versus control (by 17-81%), and conduction velocity was significantly decreased in CHF (by 6-20%). In both groups, high-frequency stimulation (BCLs<150 ms) always caused spatial APD alternans; spatially concordant alternans and spatially discordant alternans (SDA) were induced at 60% and 40% in control, respectively, whereas 18% and 82% in CHF. SDA in CHF caused wavebreaks followed by reentrant excitations, giving rise to VF. Incidence of ventricular tachycardia/VFs elicited by high-frequency dynamic pacing (BCLs<150 ms) was significantly higher in CHF versus control (93% vs. 20%). In CHF, left ventricular subepicardial muscles show significant APD shortenings at short BCLs favoring reentry formations following wavebreaks in association with SDA. High-frequency excitation itself may increase the vulnerability to VF in CHF.  相似文献   

11.
Role of intracellular pH in muscle fatigue   总被引:3,自引:0,他引:3  
Intracellular pH of in vitro diaphragm preparations was determined following low- (5 Hz, 1.5 min) and high- (75 Hz, 1 min) frequency stimulation, using glass microelectrodes of the liquid membrane type (pHm). Results were compared with values obtained by the standard homogenate technique (pHh). High- and low-frequency stimulation reduced peak tetanic tension to 21 +/- 1 (SE) and 71 +/- 2% of initial values, respectively. Peak tetanic tension returned to resting values after 10- to 15-min recovery from high- or low-frequency stimulation. Resting pHm was 7.063 +/- 0.011 (n = 72), and after fatiguing stimulation declined to values as low as 6.33. During recovery pHm significantly increased and by 10 min had returned to prefatigue values. No difference was observed in the recovery of pHm between the low- and high-frequency stimulation groups (analysis of variance test, ANOVA), and in both groups pHm recovery was highly correlated to the recovery of peak tetanic tension (r = 0.94, P less than 0.001). Resting pHh was 7.219 +/- 0.023 (n = 13), which was significantly higher than the pHm value. In contrast to pHm, intracellular pHh was significantly higher during recovery from 75- vs. 5-Hz stimulation (P less than 0.05). For both groups pHh increased significantly with time and by 10 min returned to prestimulation values. The ANOVA test demonstrated that pHh values were significantly higher than pHm values during recovery from fatigue. The results from this study support our hypothesis that fatigue from both high- and low-frequency stimulation is at least partially due to the deleterious effects of intracellular acidosis on excitation-contraction coupling.  相似文献   

12.
The effect of partial and complete spinal cord transection (Th7–Th8) on locomotor activity evoked in decerebrated cats by electrical epidural stimulation (segment L5, 80–100 μA, 0.5 ms at 5 Hz) has been investigated. Transection of dorsal columns did not substantially influence the locomotion. Disruption of the ventral spinal quadrant resulted in deterioration and instability of the locomotor rhythm. Injury to lateral or medial descending motor systems led to redistribution of the tone in antagonist muscles. Locomotion could be evoked by epidural stimulation within 20 h after complete transection of the spinal cord. The restoration of polysynaptic components in EMG responses correlated with recovery of the stepping function. The data obtained confirm that initiation of locomotion under epidural stimulation is caused by direct action on intraspinal systems responsible for locomotor regulation. With intact or partially injured spinal cord, this effect is under the influence of supraspinal motor systems correcting and stabilizing the evoked locomotor pattern.  相似文献   

13.
The electrical activity of single units located in the parvicellular part of the red nucleus (pRP) was recorded extracellularly in nitrous oxide anesthetized and C1-transected adult cats. In this area, neurons were found to respond to electrical stimulation applied to intermediate and deep layers of the right superior colliculus (SC). Forty neurons located in the pRN of both sides were studied. Three neurons out of 18 (16.6%) located in the contralateral pRN and six neurons out of 22 (27.3%) located in the ipsilateral pRN were driven by the right SC stimulation. The pRN neurons were separated into four groups according to the latency response to the SC stimulation: 1) 0.6-1.9 ms, 2) 2-4 ms, 3) 4-6 ms, 4) variable latency responses. Each of these four groups of neurons showed a particular pattern of discharge, even though their discharge frequency showed a strong consistency. Four pRN neurons, which responded to SC stimulation, showed a significant correlation with spontaneous horizontal eye movements of saccadic type. It is known that the SC represents one of the main outputs of the striato-nigral motor system. The relation between the SC and the pRN described in the present study suggest that connections exist between the cortico-rubral and the striato-nigral systems, since both have the SC as a common output structure. It is likely, therefore, that the cortico-rubral-SC system is involved in the control of oculomotor functions, and that the SC may serve to establish interactions between systems concerned with eye movements.  相似文献   

14.
We hypothesized that myocardial infarction-related alterations in ventricular fibrillation (VF) cycle length (VFCL) would correlate with changes in local cardiac electrophysiological and anatomic properties. An electrophysiological study was performed in normal, subacute, and chronic infarction mongrel dogs. VF was induced by programmed electrical stimulation and mean and minimum early and late VFCL was determined and correlated with local electrophysiological and anatomic properties. Effective refractory period (ERP), activation recovery time (ART), ERP/ART ratio, threshold, and ERP and ART dispersion were determined at 112 sites on the anterior left ventricle. Wave front progression was analyzed over a 2-s period. The extent of local tissue necrosis and of myocardial fiber disarray was also evaluated. The early mean VFCL was significantly longer in the subacute infarction (149 +/- 35 ms) and chronic infarction dogs (129 +/- 18 ms) compared with control dogs (102 +/- 15 ms; P < 0.0001 for both comparisons) as was the early minimum VFCL with similar trends seen during late VF. Complete epicardial reentrant circuits were significantly more common in normal dogs (4.3 +/- 2.4, 22.4% of cycles) than in subacute (0.75 +/- 0.96, 5.3% of cycles, P < 0.05 vs. normal) and chronic infarction dogs (1.3 +/- 1.3, 7.5% of cycles, P < 0.05 vs. normal). There was a poor correlation between the mean and minimum early and late VFCL and local electrophysiological and anatomic properties (R(2) < 0.2 for all comparisons) with a much better correlation between average mean and minimum VFCL (over the entire plaque) and global ERP and ART dispersion during early and late VF. In conclusion, VFCL in normal and infarcted myocardium shows a poor correlation with local ventricular electrophysiological and anatomic properties measured in sinus rhythm. However, there was a much better correlation between the average VFCL with global dispersion of repolarization. The lack of correlation between local VFCL and refractoriness and the infrequent occurrence of epicardial reentry suggests that intramural reentry may be the primary mechanism of VF in this model.  相似文献   

15.
The influences of stimulation frequency and temperature on mechanisms of nerve conduction block induced by high-frequency biphasic electrical current were investigated using a lumped circuit model of the myelinated axon based on Schwarz and Eikhof (SE) equations. The simulation analysis showed that a temperature-frequency relationship was determined by the axonal membrane dynamics (i.e. how fast the ion channels can open or close.). At a certain temperature, the axonal conduction block always occurred when the period of biphasic stimulation was smaller than the action potential duration (APD). When the temperature decreased from 37 to 15 degrees C, the membrane dynamics slowed down resulting in an APD increase from 0.4 to 2.4 ms accompanied by a decrease in the minimal blocking frequency from 4 to 0.5 kHz. The simulation results also indicated that as the stimulation frequency increased the mechanism of conduction block changed from a cathodal/anodal block to a block dependent upon continuous activation of potassium channels. Understanding the interaction between the minimal blocking frequency and temperature could promote a better understanding of the mechanisms of high frequency induced axonal conduction block and the clinical application of this method for blocking nerve conduction.  相似文献   

16.
Diabetes mellitus (DM) is a systemic disease characterized by changes in many organs and tissues, including the motor system. The processes of exo- and endocytosis in the motor nerve ending of the mouse diaphragm muscle during high-frequency activity in experimental alloxan model of DM were studied. Endplate potentials (EPPs) were recorded using intracellular microelectrodes during single and high-frequency (50 Hz, 1 min) stimulation. In mice with the experimental DM, the amplitude-time parameters of EPPs did not differ from those of the control; however, an increase in EPPs depression and a slower recovery were observed during high-frequency stimulation. Using an endocytosis marker FM 1-43, it was shown that in animals with experimental DM fluorescence intensity of the nerve terminals loaded with the dye by high-frequency stimulation increased that was prevented by 1-azakenpaullone (2 μM), an inhibitor of slow dynamin-1-mediated endocytosis. In addition, in the model animals, the destaining of the pre-loaded nerve terminals during high-frequency (50 Hz) stimulation slowed down. The obtained data indicate that in the experimental first type DM recycling of synaptic vesicles via long path becomes more pronounced and the mechanisms of the vesicular transport are impaired, which was confirmed by methods of mathematical modeling.  相似文献   

17.
This study determined the most efficient parameters of low-frequency/long-pulse gastric electrical stimulation (GES) required to entrain gastric slow waves and also evaluated the effect of entrainment and high-frequency, short-pulse GES on gastric electrical activity (GEA). Nine dogs were fitted with stimulation wires along the greater curvature. Entrainment was observed in six or seven animals, with long-pulse GES at six cycles per minute (cpm), at various combinations of current and pulse width and was directly related to the energy delivered. Entrainment was observed in four to seven animals, with GES at 12 cpm, and the maximal driven frequency was 6 cpm. Entrainment did not significantly increase the dominant power of GEA. High-frequency, short-pulse GES, using pulse trains of 14 Hz, 5 mA, and 330 micros, with 0.1 s on and 5 s off, and pulse trains of 40 Hz, 10 mA, and 330 micros, with 2 s on 3 s off, did not affect variables of GEA. We conclude that acute low-frequency GES but not high-frequency, short-pulse GES can entrain slow waves; the power of slow waves is not affected by either type of stimulation.  相似文献   

18.
During creation of a dominant focus in the midbrain reticular formation (RF) by its multiple stimulation with a high-frequency current (stimulation frequency 200 Hz, pulse duration 0.1-0.5 ms, voltage 1-3 V, duration 5 s) a statistically significant increase of the amplitude of the evoked potential (EP) in RF to light flashes was revealed in comparison with background data. Significant increase of EP amplitude was also observed in RF in response to the same stimuli applied in successive experiments without RF stimulation, which pointed to the existence of a latent dominant focus in the CNS.  相似文献   

19.
Ito I  Watanabe S  Kimura T  Kirino Y  Ito E 《Zoological science》2003,20(11):1327-1335
Although primary olfactory systems in various animals display spontaneous oscillatory activity, its functional significance in olfactory processing has not been elucidated. The tentacular ganglion, the primary olfactory system of the terrestrial slug Limax marginatus, also displays spontaneous oscillatory activity at 1-2 Hz. In the present study, we examined the relationship between odor-evoked spike activity and spontaneous field potential oscillations in the tentacular nerve, representing the pathway from the primary olfactory system to the olfactory center. Neural activity was recorded from the tentacular nerve before, during and after application of various odors (garlic, carrot, and rat chow) to the sensory epithelium and the changes in firing rate and spontaneous oscillations were analyzed. We detected the baseline amplitude of the oscillations and baseline spike activity before stimulation. Odor stimulations for 20 s or 60 s evoked a transient increase in the firing rate followed by a decrease in the amplitude of spontaneous oscillations. The decrease in the amplitude was larger in the first 8 s of stimulation and subsequently showed recovery during stimulation. The amplitude of the recovered oscillations often fluctuated. Odor-evoked spikes appeared when the amplitude of the recovered oscillations was transiently small. These results suggest that the large oscillations could inhibit spike activity whereas the first transient increase in spike activity was followed by the decrease in the oscillation amplitude. Our results indicate that there is a significant negative correlation between spontaneous oscillations and odor-evoked spike activity, suggesting that the spontaneous oscillations contribute to the olfactory processing in slugs.  相似文献   

20.
Cardiac resynchronization therapy has been most typically achieved by biventricular stimulation. However, left ventricular (LV) free-wall pacing appears equally effective in acute and chronic clinical studies. Recent data suggest electrical synchrony measured epicardially is not required to yield effective mechanical synchronization, whereas endocardial mapping data suggest synchrony (fusion with intrinsic conduction) is important. To better understand this disparity, we simultaneously mapped both endocardial and epicardial electrical activation during LV free-wall pacing at varying atrioventricular delays (AV delay 0-150 ms) in six normal dogs with the use of a 64-electrode LV endocardial basket and a 128-electrode epicardial sock. The transition from dyssynchronous LV-paced activation to synchronous RA-paced activation was studied by constructing activation time maps for both endo- and epicardial surfaces as a function of increasing AV delay. The AV delay at the transition from dyssynchronous to synchronous activation was defined as the transition delay (AVt). AVt was variable among experiments, in the range of 44-93 ms on the epicardium and 47-105 ms on the endocardium. Differences in endo- and epicardial AVt were smaller (-17 to +12 ms) and not significant on average (-5.0 +/- 5.2 ms). In no instance was the transition to synchrony complete on one surface without substantial concurrent transition on the other surface. We conclude that both epicardial and endocardial synchrony due to fusion of native with ventricular stimulation occur nearly concurrently. Assessment of electrical epicardial delay, as often used clinically during cardiac resynchronization therapy lead placement, should provide adequate assessment of stimulation delay for inner wall layers as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号