首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in lettuce seedlings were studied. SNP was added into hydroponic systems or sprayed directly on the leaves of plants grown with and without Cd. Excess supply of Cd (100 μM) caused growth inhibition, dramatically increased Cd accumulation in both leaves and roots, and inhibited the absorption of Ca, Mg, Fe and Cu. Excess Cd also decreased activities of superoxide dismutase peroxidase and catalase in leaves and roots, and increased the accumulation of superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Root or foliar applications of exogenous NO alleviated Cd-induced growth suppression, especially root application of 250 μM SNP and foliar addition of 500 μM SNP. Addition of SNP promoted the chlorophyll synthesis suggesting that the photosynthesis was up-regulated. Exogenous NO increased Cd-decreased activities of antioxidant enzymes and markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation. Moreover, the absorption of Ca, Mg, Fe and Cu was increased, indicating that exogenous NO stimulated H+-ATPase activity to promote sequestration or uptake of ions. In addition, exogenous NO also inhibited Cd transfer from roots to shoots, which may indicate that Cd retention in roots induced by NO plays a significant role in Cd tolerance in lettuce seedlings. These data suggest that under Cd stress, exogenous NO improves photosynthesis by increasing chlorophyll synthesis, protects lettuce seedlings against oxidative damage by scavenging ROS, helps to maintain the uptake of nutrient elements, and inhibits Cd transferred to shoots effectively.  相似文献   

2.
Cadmium (Cd) is a non-redox toxic heavy metal present in the environment and induces oxidative stress in plants. We investigated whether exogenous nitric oxide (NO) supplementation as sodium nitroprusside (SNP) has any ameliorating action against Cd-induced oxidative damage in plant roots and thus protective role against Cd toxicity. Cd treatment (50 or 250 μM) alone or in combination with 200 μM SNP was given to hydroponically grown wheat roots for a short time period of 24 h and then these were shifted to distilled water to observe changes in levels of oxidative markers (lipid peroxidation, H2O2 content and electrolyte leakage). Supplementation of Cd with SNP significantly reduced the Cd-induced lipid peroxidation, H2O2 content and electrolyte leakage in wheat roots. It indicated a reactive oxygen species (ROS) scavenging activity of NO. However, even upon removal of Cd-treatment solution, the levels of oxidative markers increased during 24 h recovery stage and later at 48 h these decreased. Cd treatment resulted in an upregulation of activities of antioxidant enzymes—superoxide dismutase (SOD, 1.15.1.1), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6), and glutathione reductase (GR, 1.6.4.2). SNP supply resulted in a reduction in Cd-induced increased activities of scavenging enzymes. The protective role of exogenous NO in decreasing Cd-induced oxidative damage was also evident from the histochemical localization of lipid peroxidation, plasma membrane integrity and superoxides. The study concludes that an exogenous supply of NO protects wheat roots from Cd-induced toxicity.  相似文献   

3.
The study aimed to test the effects of sodium nitroprusside [SNP, a nitric oxide (NO) donor], supplied with different approaches on cadmium (Cd) toxicity in lettuce seedlings (Lactuca sativa) in a pot experiment. SNP (8.94 mg) was applied into Cd-contaminated soil directly or added into a capsule, a paper bag, starch-coated granules, or foliar application. Cd (50 mg kg? 1) reduced chlorophyll content, caused oxidative stress, increased Cd accumulation in roots and leaves, and inhibited the uptake of calcium (Ca), magnesium (Mg), and iron (Fe). The addition of exogenous NO in Cd-contaminated soil increased chlorophyll content, improved antioxidant enzyme activities, promoted the uptake of Ca, Mg, and Fe, reduced Cd-induced oxidative damages, and inhibited Cd transferred from roots to shoots. Moreover, SNP supplied with different approaches had varied effects on Cd tolerance of lettuce seedlings. The alleviated effect of SNP applied into soil directly was the worst, and the three SNP slow release materials had better alleviation effects on Cd toxicity. Foliar SNP application had the best effects on increasing Cd tolerance in lettuce seedlings.  相似文献   

4.
Research on NO in plants has achieved huge attention in recent years mainly due to its function in plant growth and development under biotic and abiotic stresses. In the present study, we investigated Cd induced NO generation and its relationship to ROS and antioxidant regulation in Brassica juncea. Cd accumulated rapidly in roots and caused oxidative stress as indicated by increased level of lipid peroxidation and H2O2 thus, inhibiting the overall plant growth. It significantly decreased the root length, leaf water content and photosynthetic pigments. A rapid induction in intracellular NO was observed at initial exposures and low concentrations of Cd. A 2.74-fold increase in intracellular NO was recorded in roots treated with 25 μM Cd than control. NO effects on Malondialdehyde (MDA) content and on antioxidant system was investigated by using sodium nitroprusside (SNP), a NO donor and a scavenger, [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] (cPTIO). Roots pretreated with 5 mM SNP for 6 h when exposed to 25 μM Cd for 24 h reduced the level of proline, non-protein thiols, SOD, APX and CAT in comparison to only Cd treatments. However, this effect was almost blocked by 100 μM cPTIO pretreatment to roots for 1 h. This ameliorating effect of NO was specific because cPTIO completely reversed the effect in the presence of Cd. Thus, the present study report that NO strongly counteracts Cd induced ROS mediated cytotoxicity in B. juncea by controlling antioxidant metabolism as the related studies are not well reported in this species.  相似文献   

5.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

6.
以玉米幼苗为材料,通过在镉处理的同时补充外源一氧化氮(NO)供体硝普钠(SNP)及其类似物[K3Fe(CN)6]、以及NO消除剂,分析NO对植物耐镉性的影响,探讨NO在植物逆境胁迫响应中的作用及其机理。结果显示:添加20μmol·L-1 SNP能显著降低镉引发的玉米幼苗根生长抑制及根尖内源镉的积累,减少电解质的渗漏以及超氧化物自由基(O2.-)和过氧化氢(H2O2)的上升幅度,抑制超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性的增加,进一步提高镉胁迫下谷胱甘肽还原酶(GR)的活性。SNP的上述效应可被NO消除剂2-(4-羧基-2-苯基)-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)所逆转,而SNP类似物K3Fe(CN)6的应用对上述反应几乎无影响,说明该反应具有NO特异性。研究表明,外源NO能够显著缓解镉胁迫对玉米幼苗生长造成的伤害,该缓解作用主要是通过降低植株体内内源镉积累和减轻镉诱发的氧化伤害来实现的。  相似文献   

7.
A greenhouse hydroponic experiment was performed using Cd-sensitive (cv. Dong 17) and Cd-tolerant (Weisuobuzhi) barley seedlings to evaluate how different genotypes responded to cadmium (Cd) toxicity in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. Results showed that 5 μM Cd increased the accumulation of O2•−, H2O2, and malondialdehyde (MDA) but reduced plant height, chlorophyll content, net photosynthetic rate (P n), and biomass, with a much more severe response in the Cd-sensitive genotype. Antioxidant enzyme activities increased significantly under Cd stress in the roots of the tolerant genotype, whereas in leaves of the sensitive genotype, superoxide dismutase (SOD) and ascorbate peroxide (APX), especially cytosol ascorbate peroxidase (cAPX), decreased after 5–15 days Cd exposure. Moreover, Cd induces NO synthesis by stimulating nitrate reductase and nitric oxide synthetase-like enzymes in roots/leaves. A Cd-induced NO transient increase in roots of the Cd-tolerant genotype might partly contribute to its Cd tolerance. Exogenous NO dramatically alleviated Cd toxicity, markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation, ameliorated Cd-induced damage to leaf/root ultrastructure, and increased chlorophyll content and P n. External NO counteracted the pattern of alterations in certain antioxidant enzymes induced by Cd; for example, it significantly elevated the depressed SOD, APX, and catalase (CAT) activities in the Cd-sensitive genotype after 10- and 15-day treatments. Furthermore, NO significantly increased stromal APX and Mn-SOD activities in both genotypes and upregulated Cd-induced decrease in cAPX activity and gene expression of root/leaf cAPX and leaf CAT1 in the Cd-sensitive genotype. These data suggest that under Cd stress, NO, as a potent antioxidant, protects barley seedlings against oxidative damage by directly and indirectly scavenging ROS and helps to maintain stability and integrity of the subcellular structure.  相似文献   

8.
Selenium (Se) is an important dietary micronutrient with antioxidative roles. Cadmium (Cd), a ubiquitous environmental pollutant, is known to cause brain lesion in rats and humans. However, little is reported about the deleterious effects of subchronic Cd exposure on the brain of poultry and the protective roles on the brain by Se against Cd. The aim of this study was to investigate the protective effects of Se on Cd-induced brain damage in chickens. One hundred twenty 100-day-old chickens were randomly assigned to four groups and were fed a basal diet, or Se (as 10 mg Na2SeO3/kg dry weight of feed), Cd (as 150 mg CdCl2/kg dry weight of feed), or Cd?+?Se in their basic diets for 60 days. Then, concentrations of Cd and Se, production of nitric oxide (NO), messenger RNA (mRNA) level and activity of inducible NO synthase (iNOS), level of oxidative stress, and histological and ultrastructural changes of the cerebrum and cerebellum were examined. The results showed that Cd exposure significantly increased Cd accumulation, NO production, iNOS activities, iNOS mRNA level, and MDA content in the cerebrum and cerebellum. Cd treatment obviously decreased Se content and antioxidase activities and caused histopathological changes in the cerebrum and cerebellum. Se supplementation during dietary Cd obviously reduced Cd accumulation, NO production, mRNA level and activity of iNOS, oxidative stress, and histopathological damage in the cerebrum and cerebellum of chickens. It indicated that Se ameliorates Cd-induced brain damage in chickens by regulating iNOS-NO system changes, and oxidative stress induced by Cd and Se can serve as a potential therapeutic for Cd-induced brain lesion of chickens.  相似文献   

9.
A greenhouse hydroponic experiment was performed to evaluate how peanut seedlings (Arachis hypogaea L.) responded to iron (Fe) deficiency stress in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. The results showed that Fe deficiency inhibited peanut plant growth, decreased chlorophyll and active Fe concentrations, and dramatically disturbed ion balance. The addition of 50, 100, 250, and 500 µM SNP, significantly promoted the absorption of Fe in the cell wall, cell organelles, and soluble fractions, increased the concentrations of active Fe and chlorophyll in peanut plants, and alleviated the excess absorption of manganese (Mn) and copper (Cu) induced by Fe deficiency. In addition, SNP also significantly increased the activities of superoxide dismutase, peroxidase, and catalase, which is beneficial to inhibit the accumulation of malondialdehyde and reactive oxygen species. Addition of 250 µM SNP had the most significant alleviating effect against Fe-deficiency stress, and after 15 days of treatment, the plants with the 250 µM SNP treatment achieved comparable NO levels with those grown under optimal nutrition conditions. However, the effects of SNP were reversed by addition of hemoglobin (Hb, a NO scavenger). These results suggest that NO released from SNP decomposition was responsible for the effect of SNP-induced alleviation on Fe deficiency.  相似文献   

10.
11.
The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in ryegrass seedlings (Lolium perenne L.) were studied by investigating the symptoms, plant growth, chlorophyll content, lipid peroxidation, H+-ATPase enzyme and antioxidative enzymes. Addition of 100???M CdCl2 caused serious chlorosis and inhibited the growth of ryegrass seedlings, and dramatically increased accumulation of Cd in both shoots and roots, furthermore, the absorption of macro and micronutrients were inhibited. Addition of 50, 100, 200???M SNP significantly decreased the transport of Cd from roots to shoots, alleviated the inhibition of K, Ca, Mg and Fe, Cu, Zn absorption induced by Cd, reduced the toxicity symptoms and promoted the plant growth. The accumulation of reactive oxygen species (ROS) significantly increased in ryegrass seedlings exposed to Cd, and resulted in the lipid peroxidation, which was indicated by accumulated concentration of thiobarbituric acid-reactive substances. Addition of 50, 100, 200???M SNP significantly decreased the level of ROS and lipid peroxidation. Activities of antioxidant enzymes also showed the same changes. Addition of 50, 100, 200???M SNP increased activities of superoxide dismutase, peroxidase, catalase and ascorbate peroxidase in ryegrass seedlings exposed to Cd. Addition of 100???M SNP had the most significant alleviating effect against Cd toxicity while the addition of 400???M SNP had no significant effect with Cd treatment.  相似文献   

12.
Potassium (K+) plays important roles in the development of plants and the response to various environmental stresses. However, the involvement of potassium in alleviating heavy metal stress in tobacco remains elusive. Greenhouse hydroponic experiments were conducted to evaluate the alleviating effects of K+ on tobacco subjected to cadmium (Cd) toxicity using four different K+ levels. Dose-dependent increases of plant biomass were found in both 0-μM Cd and 5-μM Cd treatments under different K+ levels, with the exception of the 1-mM KHCO3 (K3) treatment. The best mitigation effect was recorded with the 0.5-mM K+ (K2) treatment, which greatly alleviated Cd-induced growth inhibition, photosynthesis reduction, and oxidative stress. Compared with K0 treatment (no KHCO3 addition), K2 treatment significantly reduced Cd uptake and translocation after 5 and 10 days of Cd treatment. Moreover, the net photosynthetic rate, intracellular CO2 concentration, stomatal conductance, and transpiration rate as well as K+, zinc, manganese, copper, and iron concentrations in both shoots and roots after 10 days of Cd treatment significantly improved under the K2 treatment, and malondialdehyde accumulation in both shoots and roots was repressed, compared with K0 + Cd. Superoxide dismutase was found to play key roles in alleviating Cd-induced oxidative pressure in shoots of plants in K2 treatment under Cd treatment. Our findings advocate a positive role for K+ in reducing pollutant residues for safe production, especially in soils slightly or moderately polluted with Cd.  相似文献   

13.
Cadmium (Cd) is an important industrial and environmental pollutant. In animals, the liver is the major target organ of Cd toxicity. In this study, rat hepatocytes were treated with 2.5~10 μM Cd for various durations. Studies on nuclear morphology, chromatin condensation, and apoptotic cells demonstrate that Cd concentrations ranging within 2.5~10 μM induced apoptosis. The early-stage marker of apoptosis, i.e., decreased mitochondrial membrane potential, was observed as early as 1.5 h at 5 μM Cd. Significant (P?P?2+ concentration ([Ca2+] i ) of Cd-exposed cells significantly increased (P?2+] i may play an important role in apoptosis. Overall, these results showed that oxidative stress and Ca2+ signaling were critical mediators of the Cd-induced apoptosis of rat hepatocytes.  相似文献   

14.
A hydroponic experiment was carried out to study the physiological mechanisms of N-acetyl cysteine (NAC) in mitigating cadmium (Cd) toxicity in two barley (Hordeum vulgare L.) genotypes, Dong 17 (Cd-sensitive) and Weisuobuzhi (Cd-tolerant). Addition of 200 μM NAC to a culture medium containing 5 μM Cd (Cd + NAC) markedly alleviated Cd-induced growth inhibition and toxicity, maintained root cell viability, and dramatically depressed O 2 ·? and ·OH, and malondialdehyde accumulation, significantly reduced Cd concentration in leaves and roots, especially in the sensitive genotype Dong 17. External NAC counteracted Cd-induced alterations of certain antioxidant enzymes, e.g., brought root superoxide dismutase and glutathione reductase, leaf/root peroxidase and glutathione peroxidase activities of the both genotypes down towards the control level, but elevated Cd-stress-depressed leaf catalase in Dong 17 and root ascorbate peroxidase activities in both genotypes. NAC counteracted Cd-induced alterations in amino acids and microelement contents. Furthermore, NAC significantly reduced Cd-induced damage to leaf/root ultrastructure, e.g. the shape of chloroplasts in plants treated with Cd + NAC was relatively normal with well-structured thylakoid membranes and parallel pattern of lamellae but less osmiophilic plastoglobuli compared with Cd alone treatment; nuclei of root cells were better formed and chromatin distributed more uniformly in both genotypes. These results suggested that under Cd stress, NAC may protects barley seedlings against Cd-induced damage by directly and indirectly scavenging reactive oxygen species and by maintaining stability and integrity of the subcellular structure.  相似文献   

15.
In this study, the effect of cadmium (Cd) uptake and concentration on some growth and biochemical responses were investigated in Malva parviflora under Cd treatments including 0, 10, 50 and 100 µM. The shoots and roots were able to accumulate Cd. However, increased Cd dose led to a considerable Cd content in the roots. Cd stress decreased growth, increased lipid peroxidation and also enhanced proline and ascorbic acid contents in both shoots and roots. Chlorophyll and carotenoid contents decreased in the plants with the increasing Cd concentration. While the activities of catalase (CAT) and superoxide dismutase (SOD) increased in the shoots under different Cd doses, these activities decreased in the roots as compared to the control. Both shoots and roots demonstrated a significant increase in guaiacol peroxidase activity in response to Cd stress. Contrary to the aboveground parts, the roots subjected to Cd doses showed a rise in protein content. Despite higher Cd content in the roots, it seems that CAT and SOD do not play a key role in detoxification of Cd-induced oxidative stress. These findings confirm that reduced biomass and growth under Cd stress can be due to an increase in oxidative stress and a decrease in photosynthetic pigment content. The present study clearly indicates that the shoots and roots exploit different tolerance behaviors to alleviate Cd-induced oxidative stress in M. parviflora.  相似文献   

16.
The physiological responses of tobacco (Nicotiana tabacum L.) to oxidative stress induced by cadmium were examined with respect to reactive oxygen species (ROS) formation, antioxidant enzymes activities, and cell death appearance in wild-type SR1 and catalase-deficient CAT1AS plants. Leaf disks treated with 100 or 500 µM CdCl2 increased Evans blue staining and leakage of electrolytes in SR1 or CAT1AS plants, more pronouncedly in the transgenic cultivar, but without evidence of lipid peroxidation in any of the cultivars compared to controls. Cadmium significantly reduced the NADPH oxidase-dependent O 2 ? formation in a dose dependent manner in SR1 very strongly at 500 µM (to 5% of the activity in the nontreated SR1 leaf disks). In CAT1AS, the NADPH oxidase activity was constitutively reduced at 50% with respect to that of SR1, but the magnitude of the decay was less prominent in this cultivar, reaching an average of 64% of the C at 21 h, for both Cd concentrations. Hydrogen peroxide formation was only slightly increased in SR1 or CAT1AS leaf disks at 21 h of exposure compared to the respective controls. Cd increased superoxide dismutase activity more than six times at 21 h in CAT1AS, but not in SR1 and reduced catalase activity by 59% at 21 h of treatment only in SR1 plants. Despite that catalase expression was constitutively lower in CATAS1 compared to SR1 nontreated leaf disks, 500 µM CdCl2 almost doubled it only in CAT1AS at 21 h. The mechanisms underlying Cd-induced cell death were possibly not related exclusively to ROS formation or detoxification in tobacco SR1 or CAT1AS plants.  相似文献   

17.
Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8–16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙? and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25–40 %. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.  相似文献   

18.

Background and aims

Cadmium (Cd) could activate activity of mitogen-activated protein kinase MPK6 in plants. In this study, we investigated the role of MPK6 in mediating Cd toxicity in plants.

Methods

The wild type Arabidopsis plants (WT) and the mpk6-2 mutants were subjected either 0 (Control) or 10 μM Cd treatment. Kinase activity of MPK6, nitric oxide (NO) level, Cd concentration, and oxidative stress were measured.

Results

In WT plants, Cd exposure rapidly stimulated kinase activity of MPK6. However, upon Cd exposure, mpk6-2 showed better growth than the WT. Although Cd-induced production of NO in roots was greater in WT than in mpk6-2, there was no difference in Cd concentration between the two plants. Nevertheless, the Cd-induced hydroperoxide burst, lipid peroxidation and loss of membrane integrity, were all more severe in the WT than in mpk6-2. Foliar applications of antioxidant ascorbic acid, vigorously improved the growth of both the WT and mpk6-2 under Cd exposure. Thereby the growth difference between these two plants was minimized.

Conclusions

Mutation of mpk6 enhances Cd tolerance in plants by alleviating oxidative stress, but did not affect cadmium accumulation in plants.  相似文献   

19.
In the present study, we have investigated the effects of nitric oxide (NO) on alleviating manganese (Mn)-induced oxidative stress in rice leaves. Exogenous MnCl2 treatment to excised rice leaves for 24 and 48 h resulted in increased production of H2O2 and lipid peroxides, decline in the levels of antioxidants, glutathione and ascorbic acid, and increased activities of antioxidative enzymes, superoxide dismutase, guaiacol peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Treatment of rice leaves with 100 μM sodium nitroprusside (SNP), a NO donor, was effective in reducing Mn-induced increased levels of H2O2, lipid peroxides and increased activities of antioxidative enzymes. The levels of reduced ascorbate and glutathione were considerably recovered due to SNP treatment. The effect of SNP was reversed by the addition of NO scavenger, 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (c-PTIO) suggesting that ameliorating effect of SNP is due to release of NO. The results indicate that MnCl2 induces oxidative stress in excised rice leaves, lowers the levels of reduced ascorbate and glutathione, and elevates activities of the key antioxidative enzymes. NO appears to provide a protection to the rice leaves against Mn-induced oxidative stress and that exogenous NO application could be advantageous in combating the deleterious effects of Mn-toxicity in rice plants.  相似文献   

20.
Nitric oxide (NO) is an important plant signaling molecule that has a vital role in abiotic stress tolerance. In the present study, we assessed drought-induced (15 and 30% PEG, polyethylene glycol) damage in wheat (Triticum aestivum L. cv. Prodip) seedlings and mitigation by the synergistic effect of exogenous Arg (0.5 mM l-Arginine) and an NO donor (0.5 mM sodium nitroprusside, SNP). Drought stress sharply decreased the leaf relative water content (RWC) but markedly increased the proline (Pro) content in wheat seedlings. Drought stress caused overproduction of reactive oxygen species (ROS) and methylglyoxal (MG) due to the inefficiency of antioxidant enzymes, the glyoxalase system, and the ascorbate-glutathione pool. However, supplementation with the NO donor and Arg enhanced the antioxidant defense system (both non-enzymatic and enzymatic components) in drought-stressed seedlings. Application of the NO donor and Arg also enhanced the glyoxalase system and reduced the MG content by increasing the activities of the glyoxalase system enzymes (Gly I and Gly II), which restored the leaf RWC and further increased the Pro content under drought stress conditions. Exogenous NO donor and Arg application enhanced the endogenous NO content, which positively regulated the antioxidant system and reduced ROS production. Thus, the present study reveals the crucial roles of Arg and NO in enhancing drought stress tolerance in wheat seedlings by upgrading their water status and reducing oxidative stress and MG toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号