首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objectives of this comparative study were to investigate the responses of biomass accumulation and partitioning to nitrogen supply and to examine the effect of low-nitrogen supply on the photosynthetic responses of maize leaves to steady-state and dynamic light. While the difference in leaf number and stem diameter was not statistically significant, there was a significant difference in plant height between the low-nitrogen and high-nitrogen maize plants. During grain-filling period, the ear leaf of the low-nitrogen maize plants possessed lower values of maximum photosynthetic rate, maximum stomatal conductance, maximum transpiration rate, apparent quantum yield, light compensate point, and carboxylation efficiency than did that of the high-nitrogen maize plants. Contrarily, lower values of intercellular CO2 concentration and dark respiration rate were observed in the high-nitrogen maize plants. In addition, a slower response to simulated sunflecks was found in the ear leaf of the low-nitrogen maize plants; however, stomatal limitations did not operate in the ear leaf of the high-nitrogen or low-nitrogen maize plants during the photosynthetic induction. As compared to the high-nitrogen maize plants, the low-nitrogen maize plants accumulated much less plant biomass but allocated a greater proportion of biomass to belowground parts. In conclusion, our results suggested that steady-state photosynthetic capacity is restricted by both biochemical and stomatal limitation and the photosynthetic induction is constrained by biochemical limitation alone in low-nitrogen maize plants, and that maize crops respond to low-nitrogen supply in a manner by which more biomass was allocated preferentially to root tissues.  相似文献   

2.
刘英  雷少刚  程林森  程伟  卞正富 《生态学报》2018,38(9):3069-3077
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。  相似文献   

3.
  • Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
  • We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
  • Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
  • Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
  相似文献   

4.
Interactive effects of root restriction and atmospheric CO2 enrichment on plant growth, photosynthetic capacity, and carbohydrate partitioning were studied in cotton seedlings (Gossypium hirsutum L.) grown for 28 days in three atmospheric CO2 partial pressures (270, 350, and 650 microbars) and two pot sizes (0.38 and 1.75 liters). Some plants were transplanted from small pots into large pots after 20 days. Reduction of root biomass resulting from growth in small pots was accompanied by decreased shoot biomass and leaf area. When root growth was less restricted, plants exposed to higher CO2 partial pressures produced more shoot and root biomass than plants exposed to lower levels of CO2. In small pots, whole plant biomass and leaf area of plants grown in 270 and 350 microbars of CO2 were not significantly different. Plants grown in small pots in 650 microbars of CO2 produced greater total biomass than plants grown in 350 microbars, but the dry weight gain was found to be primarily an accumulation of leaf starch. Reduced photosynthetic capacity of plants grown at elevated levels of CO2 was clearly associated with inadequate rooting volume. Reductions in net photosynthesis were not associated with decreased stomatal conductance. Reduced carboxylation efficiency in response to CO2 enrichment occurred only when root growth was restricted suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase activity may be responsive to plant source-sink balance rather than to CO2 concentration as a single factor. When root-restricted plants were transplanted into large pots, carboxylation efficiency and ribulose-1,5-bisphosphate regeneration capacity increased indicating that acclimation of photosynthesis was reversible. Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO2.  相似文献   

5.
Physiological processes that modulate photosynthetic acclimation to rising atmospheric CO2 concentration are subjects of intense discussion recently. Apparently, the down-regulation of photosynthesis under elevated CO2 is not understood clearly. In the present study, the response of soybean (Glycine max L.) to CO2 enrichment was examined in terms of nitrogen partitioning and water relation. The plants grown under potted conditions without combined N application were exposed to either ambient air (38 Pa CO2) or CO2 enrichment (100 Pa CO2) for short (6 days) and long (27 days). Plant biomass, apparent photosynthetic rate, transpiration rate and 15N uptake and partitioning were measured consecutively after elevated CO2 treatment. Long-term exposure reduced photosynthetic rate, stomatal conductance and transpiration rate. In contrast, short-term exposure increased biomass production of soybean due to increase in dry weight of leaves. Leaf N concentration tended to decrease with CO2 enrichment, however such difference was not true for stem and roots.A close correlation was observed between transpiration rate and 15N partitioned into leaves, suggesting that transpiration plays an important role on nitrogen partitioning to leaves. In conclusion existence of a feed back mechanism for photosynthetic acclimation has been proposed. Down-regulation of photosynthetic activity under CO2 enrichment is caused by decreasing leaf N concentration, and reduced rate of transpiration owing to decreased stomatal conductance is partially responsible for poor N translocation.  相似文献   

6.
Potatoes (Solanum tuberosum L., cv. Bintje) were grown in a naturally lit glasshouse. Laboratory measurements on leaves at three insertion levels showed a decline with leaf age in photosynthetic capacity and in stomatal conductance at near saturating irradiance. Conductance declined somewhat more with age than photosynthesis, resulting in a smaller internal CO2 concentration in older relative to younger leaves. Leaves with different insertion number behaved similarly. The changes in photosynthesis rate and in nitrogen content with leaf age were closely correlated. When PAR exceeded circa 100 W m–2 the rate of photosynthesis and stomatal conductance changed proportionally as indicated by a constant internal CO2 concentration. The photosynthesis-irradiance data were fitted to an asymptotic exponential model. The parameters of the model are AMAX, the rate of photosynthesis at infinite irradiance, and EFF, the slope at low light levels. AMAX declined strongly with leaf age, as did EFF, but to a smaller extent. During drought stress photosynthetic capacity declined directly with decreasing water potential (range –0.6 to –1.1 MPa). Initially, stomatal conductance declined faster than photosynthetic capacity.Abbreviations LNx leaf number x, counted in acropetal direction - DAP days after planting - DALA days after leaf appearance - Ci CO2 concentration in the leaf - Ca CO2 concentration in ambient air - LWP leaf water potential - OP osmotic potential - PAR photosynthetically active radiation  相似文献   

7.
The best predictor of leaf level photosynthetic rate is the porosity of the leaf surface, as determined by the number and aperture of stomata on the leaf. This remarkable correlation between stomatal porosity (or diffusive conductance to water vapour gs) and CO2 assimilation rate (A) applies to all major lineages of vascular plants (Figure 1) and is sufficiently predictable that it provides the basis for the model most widely used to predict water and CO2 fluxes from leaves and canopies. Yet the Ball–Berry formulation is only a phenomenological approximation that captures the emergent character of stomatal behaviour. Progressing to a more mechanistic prediction of plant gas exchange is challenging because of the diversity of biological components regulating stomatal action. These processes are the product of more than 400 million years of co‐evolution between stomatal, vascular and photosynthetic tissues. Both molecular and structural components link the abiotic world of the whole plant with the turgor pressure of the epidermis and guard cells, which ultimately determine stomatal pore size and porosity to water and CO2 exchange (New Phytol., 168, 2005, 275). In this review we seek to simplify stomatal behaviour by using an evolutionary perspective to understand the principal selective pressures involved in stomatal evolution, thus identifying the primary regulators of stomatal aperture. We start by considering the adaptive process that has locked together the regulation of water and carbon fluxes in vascular plants, finally examining specific evidence for evolution in the proteins responsible for regulating guard cell turgor.  相似文献   

8.
CO2 exchange, transpiration and leaf water potential of Welwitschia mirabilis were measured in three contrasting habitats of the Namib desert. From these measurements stomatal conductance, internal CO2concentration and WUE were calculated. In two of the three habitats photosynthetic CO2 uptake decreased and transpiration increased with increasing leaf age while in the third habitat CO2 uptake increased and transpiration decreased with leaf age. Except for the stomata of young leaf sections in this habitat, stomata closed with increasing δw leading to a pronounced midday depression of CO2 uptake. The high stomatal limitation of photosynthetic CO2 uptake of glasshouse-grown plants was verified in the natural habitat. Photosynthetic CO2 uptake saturated between 800 and 1300 μmol photons m?2 s?1depending on leaf age and habitat. CO2 uptake had a broad temperature optimum declining significantly beyond 32 °C. Predawn leaf water potential reflected water availability and atmospheric conditions in the three habitats and ranged from ? 2.5 to ? 6.2 MPa. There was a pronounced diurnal course of leaf water potential in all habitats. During the day a gradient in water potential developed along the leaf axis with the lowest potential at the leaf's tip. With respect to whole plant balances of CO2 exchange and transpiration, there were marked differences between Welwitschias in the three habitats. Despite a negative CO2 balance over a period of five months, leaves in the driest habitat grew constantly at the expense of carbon reserves in the plant. Only at the wettest site did carbon gain exceed carbon demand for growth. The WUE of whole plants was insignificant in all habitats. The results were as contrasting as the habitats and plants and did not allow generalisations about adaptational features of Welwitschia mirabilis.  相似文献   

9.
F. Yoshie  S. Yoshida 《Oecologia》1987,72(2):202-206
Summary Seasonal changes in the photosynthetic characteristics of intact involucral leaves of Anemone raddeana were investigated under laboratory conditions. Net photosynthesis and constant water vapor pressure deficit showed almost the same seasonal trend. They increased rapidly from mid-April immediately after unfolding of the leaves and reached the maximum in late-April, before the maximum expansion of the leaves. They retained the maximum values until early-May and then decreased toward late-May with a progress of leaf senescence. The calculated values of intercellular CO2 concentration and relative stomatal limitation of photosynthesis showed no significant change throughout the season. The carboxylation efficiency as assessed by the initial slope of Ci-photosynthesis curve and the net photosynthesis under a high Ci regime varied seasonally in parallel with the change of the light-saturated photosynthesis. The results indicate that the seasonal changes in light-saturated net photosynthesis are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Nevertheless, leaf conductance changed concomitantly with photosynthetic capacity, indicating that the seasonal change in stomatal conductance is modulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations is maintained constant. The shape of light-photosynthesis curve was similar to that of sun-leaf type. The quantum yield also changed simultaneously with the photosynthetic capacity throughout the season.Contribution No. 2965 from the Institute of Low Temperature Science  相似文献   

10.
F. Yoshie  S. Kawano 《Oecologia》1986,71(1):6-11
Summary Seasonal changes in photosynthetic capacity, and photosynthetic responses to intercellular CO2 concentration and irradiance were investigated under laboratory conditions on intact leaves of Pachysandra terminalis. Photosynthetic capacity and stomatal conductance under saturating light intensity and constant water vapor pressure deficit showed almost the same seasonal trend. They increased from early June just after the expansion of leaves, reached the maximum in late-Septemer, and then decreased to winter. In over-wintering leaves they recovered and increased immediately after snow-melting, reached a first maximum in late April, and then decreased to early July in response to the reduction of light intensity on the forest floor. There-after, they increased from mid August, reached a second maximum in late September, and then decreased to winter. The parallel changes of photosynthesis and stomatal conductane indicate a more or less constant intercellular CO2 concentration throughout the year. The calculated values of relative stomatal limitation of photosynthesis were nearly constant throughout the year, irrespective of leaf age. The results indicate that the seasonal changes in light-saturated photosynthetic capacity are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Indeed, carboxylation efficiency assessed by the inital slope of the Ci-photosynthesis curve changed in proportion to seasonal changes of the photosynthetic capacity in both current-year and over-wintered leaves. High photosynthetic capacity in current-year leaves as compared with one-year-old leaves was also due to the high photosynthetic capacity of mesophyll. Nevertheless, stomatal conductance changed in proportion to photosynthetic capacity, indicating that stomatal conductance is regulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations are maintained constant. The quantum yield also changed seasonally parallel with that in the photosynthetic capacity.Contribution No. 2893 from the Institute of Low Temperature Science  相似文献   

11.
The ecophysiological responses of the homoiochlorophyllous desiccation-tolerant (HDT) plant Haberlea rhodopensis showed that this plant could tolerate water deficit and both leaves and roots had high ability to survive severe desiccation. The changes and correlation between CO2 assimilation, stomatal conductance, contents of photosynthetic pigments, root respiration and specific leaf area during dehydration–rehydration cycle were investigated. The physiological activity of leaves and roots were examined in fully hydrated (control) plants and during 72 h of dehydration, as well as following 96 h of rehydration every 6 and 24 h. After 6 h of dehydration, the stomatal conductance declined and the intercellular CO2 concentration increased. The reduction in CO2 assimilation rate was observed after 54 h of dehydration. There was a good correlation between the root respiration and water content. Our results showed that the plasticity of adaptation in leaves and roots were different during extreme water conditions. Roots were more sensitive and reacted faster to water stress than leaves, but their activity rapidly recovered due to immediate and efficient utilization of periodic water supply.  相似文献   

12.
The relationship between single leaf photosynthesis and conductance was examined in cotton (Gossypium hirsutum L.) across a range of environmental conditions. The purpose of this research was to separate and define the degree of stomatal and nonstomatal limitations in the photosynthetic process of field-grown cotton.

Photosynthetic rates were related to leaf conductance of upper canopy leaves in a curvilinear manner. Increases in leaf conductance of CO2 in excess of 0.3 to 0.4 mole per square meter per second did not result in significant increases in gross or net photosynthetic rates. No tight coupling between environmental influences on photosynthetic rates and those affecting conductance levels was evident, since photosynthesis per unit leaf conductance did not remain constant. Slowly developing water stress caused greater reductions in photosynthesis than in leaf conductance, indicating nonstomatal limitations of photosynthesis.

Increases in external CO2 concentration to levels above ambient did not produce proportional increases in photosynthesis even though substomatal or intercellular CO2 concentration increased. The lack of a linear increase in photosynthetic rate in response to increases in leaf conductance and in response to increases in external CO2 concentration demonstrated that nonstomatal factors are major photosynthetic rate determinants of cotton under field conditions.

  相似文献   

13.
Optimal allocation of leaf nitrogen maximizes daily CO2 assimilation for a given leaf nitrogen concentration. According to the hypothesis of optimization, this condition occurs when the partial derivative of assimilation rate with respect to leaf nitrogen concentration is constant. This hypothesis predicts a linear increase of assimilation rate with leaf nitrogen concentration under constant conditions. Plants of Amaranthus powellii Wats. were grown at 1, 5, 10, or 45 millimolar nitrate to obtain leaves with different nitrogen concentrations. Assimilation rate at 340 microbar CO2/bar, stomatal conductance, CO2- and light-saturated net photosynthetic rate, the initial slope of the CO2 response of photosynthesis, ribulose-1,5′-bisphosphate carboxylase activity, and phosphoenolpyruvate carboxylase activity were linearly related to estimated or actual leaf nitrogen concentration. The data are consistent with the optimal use of leaf nitrogen. This hypothesis and the hypothesis of optimal stomatal conductance were combined to determine the relationship between conductance and leaf nitrogen concentration. The slope of conductance versus leaf nitrogen concentration was not significantly different than the slope predicted by the combination of the two hypotheses. Stomatal conductance was linearly related to leaf nitrogen in the field and the slope decreased with lower xylem pressure potentials in a manner consistent with the hypotheses. Finally, apparent maximum stomatal aperture of isolated abaxial epidermal strips was linearly related to leaf nitrogen suggesting stomatal conductance and assimilation rate are controlled in parallel by leaf nitrogen concentration or some factor correlated with leaf nitrogen.  相似文献   

14.
为了探究喀斯特石漠化地区植物叶片功能性状及影响因素,以及揭示其对石漠化环境的适应机理,该文以中国南方喀斯特高原峡谷地区的泡核桃(Juglans sigillata)为对象,揭示土壤养分对叶片结构和光合性状的影响效应。结果表明:(1)泡核桃叶功能性状随石漠化等级增加,叶面积减小,比叶面积增大,叶干物质含量和叶组织密度先降后升,蒸腾速率、胞间CO2浓度、气孔导度和光能利用率先下降后升高,其他性状变化趋势不显著。(2)冗余分析表明土壤养分能够解释37.4%的光合性状变异与53.4%的结构性状变异,其中全磷和溶解性有机碳对光合性状影响最大,而对结构性状影响最显著的是碱解氮和速效磷。(3)比叶面积分别与叶干物质含量极显著负相关,与净光合速率极显著正相关,叶厚度与叶组织密度极显著负相关,蒸腾速率与胞间CO2浓度、气孔导度极显著正相关,水分利用速率与蒸腾速率、胞间CO2浓度、气孔导度极显著负相关,光能利用率与净光合速率显著正相关。研究结果表明,泡核桃为适应喀斯特石漠化的特殊生境采取增强生长功能性状,同时提高资源获取能力的开拓型生长策略...  相似文献   

15.
Abstract Photosynthetic and anatomical parameters of leaves from the juvenile and adult part of an ivy plant (Hedera helix L.) have been determined and compared with each other. Light-saturated net photosynthesis (per unit leaf area) was about 1.5 times higher in adult leaves than in juvenile ones. The lower photosynthetic capacity of juvenile leaves was caused by a lower stomatal and especially a lower residual conductance to the CO2-transfer. This corresponds with anatomical features of the leaves, i.e. lower stomatal frequency, fewer chloroplasts per cell, and – most important – thinner leaves, as well as with a less efficient photosynthetic apparatus measured as Hill reaction of isolated broken chloroplasts and activity of ribulose bisphosphate carboxylase. No differences in the respiration in light (relative to net photosynthesis) and in the CO2-compensation concentration could be detected between the two leaf types. These observed anatomical and photosynthetic parameters of the juvenile and adult ivy leaves resemble those reported for shade and sun leaves, respectively, although the leaves investigated originated from the same light environment.  相似文献   

16.
The purpose of this study was to characterize leaf photosynthetic and stomatal responses of wheat (Triticum aestivum L.) plants grown under two N-nutritional regimes. High- and low-N regimes were imposed on growth-chamber-grown plants by fertilizing with nutrient solutions containing 12 or 1 millimolar nitrogen, respectively. Gas-exchange measurements indicated not only greater photosynthetic capacity of high-N plants under well-watered conditions, but also a greater sensitivity of CO2 exchange rate and leaf conductance to CO2 and leaf water potential compared to low-N plants. Increased sensitivity of high-N plants was associated with greater tissue elasticity, lower values of leaf osmotic pressure and greater aboveground biomass. These N-nutritional-related changes resulted in greater desiccation (lowered relative water content) of high-N plants as leaf water potential fell, and were implicated as being important in causing greater sensitivity of high-N leaf gas exchange to reductions in water potential. Water use efficiency of leaves, calculated as CO2 exchange rate/transpiration, increased from 9.1 to 13 millimoles per mole and 7.9 to 9.1 millimoles per mole for high- and low-N plants as water became limiting. Stomatal oscillations were commonly observed in the low-N treatment at low leaf water potentials and ambient CO2 concentrations, but disappeared as CO2 was lowered and stomata opened.  相似文献   

17.
Isoprene (2-methyl-1,3-butadiene) is one of the major volatile hydrocarbons emitted by plants, but its biosynthetic pathway and role in plant metabolism are unknown. Mucuna sp. (velvet bean) is an isoprene emitter, and leaf isoprene emission rate increased as much as 125-fold as leaves developed, and declined in older leaves. Net CO2 assimilation and stomatal conductance, under different growth and environmental conditions, increased 3 to 5 days prior to an increase in isoprene emission rate, indicating that photosynthetic competence develops before significant isoprene emission occurs.  相似文献   

18.
Young leaves of white clover are subjected to low irradiance and low red to far-red (R:FR) ratio within canopies. The objectives were to investigate the consequences of low R:FR ratio on morphology, net CO2 assimilation and photochemical activity of leaves developed under simulated light environment of canopy. We used far-red (FR) light emitting diodes to modify the R:FR ratio only at the developing leaf under a low irradiance. Net CO2 assimilation rate, stomatal conductance and leaf morphology were not affected by low R:FR ratio. FR exposure slightly reduced the photochemical quantum yield of PSII but there were no consequences on electron flow through photosystem II. The carbon fixation by the leaf was therefore not modified by light quality. However, low R:FR ratio decreased the leaf chlorophyll content by 21 %. Those effects were only attributed to just unfolded leaves as they were not persistent in mature leaves and there were no consequences on plant biomass accumulation.  相似文献   

19.
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt‐stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt‐stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc) of rice leaves. Decreased A in salt‐stressed leaves was mainly attributable to low Cc, which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt‐stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity‐tolerant rice cultivars.  相似文献   

20.
Qiu J  Israel DW 《Plant physiology》1992,98(1):316-323
The effects of phosphorus deficiency on carbohydrate accumulation and utilization in 34-day-old soybean (Glycine max L. Merr.) plants were characterized over a diurnal cycle to evaluate the mechanisms by which phosphorus deficiency restricts plant growth. Phosphorus deficiency decreased the net CO2 exchange rate throughout the light period. The decrease in the CO2 exhange rate was associated with a decrease in stomatal conductance and an increase in the internal CO2 concentration. These observations indicate that phosphorus deficiency increased mesophyll resistance. Assimilate export rate from the youngest fully expanded leaves was decreased by phosphorus deficiency, whereas starch concentrations in these leaves were increased. Higher starch concentrations in phosphorus-deficient youngest fully expanded leaves resulted from a longer period of net starch accumulation and a shorter period of net starch degradation relative to those for phosphorus-sufficient controls. Phosphorus deficiency decreased sucrose-P synthase activity by 27% (averaged over the diurnal cycle), and essentially eliminated diurnal variation in sucrose-P-synthase activity. Diurnal variations in nonstructural carbohydrate concentrations in leaves and stems were also less pronounced in phosphorus-deficient plants than in controls. In phosphorus-deficient plants, only 30% of the whole plant starch present at the end of a light phase was utilized during the subsequent 12-hour dark phase as compared with 68% for phosphorus-sufficient controls. Although phosphorus deficiency decreased the CO2 exchange rate and whole plant leaf area, accumulation of high starch concentrations in leaves and stems and restricted starch utilization in the dark indicate that growth processes (i.e. sink activities) were restricted to a greater extent than photosynthetic capacity. Further experimentation is required to determine whether decreased starch utilization in phosphorus-deficient plants is the cause or the result of restricted growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号