首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hermatypic (reef building) corals live in an environment characterized by high ambient levels of photosynthetically active radiation (PAR) and ultraviolet radiation (UVR). Photoadaptive mechanisms have evolved to protect the sensitive cell structures of the host coral and their photosynthetic, endosymbiotic zooxanthellae. Environmental stressors may destabilize the coral-zooxanthellae system resulting in the expulsion of zooxanthellae and/or loss of photosynthetic pigment within zooxanthellae, causing a condition known as bleaching. It is estimated that 1% of the world’s coral population is lost yearly, partly due to bleaching. Despite intensive research efforts, a single unified mechanism cannot explain this phenomenon. Although UVA and UVB cellular damage is well documented, UVC damage is rarely reported due to its almost complete absorption in the stratosphere. A small scale coral propagation system at the University of Maine was accidentally exposed to 15.5 h of UVC radiation (253.7 nm) from a G15T8 germicidal lamp, resulting in a cumulative surface irradiance of 8.39 × 104 J m−2. An experiment was designed to monitor the progression of UVC induced damage. Branch sections from affected scleractinian corals, Acropora yongei and Acropora formosa were submitted to histopathology to provide an historical record of tissue response. The death of gastrodermal cells and necrosis resulted in the release of intracellular zooxanthellae into the gastrovascular canals. Zooxanthellae were also injured as evidenced by pale coloration, increased vacuolization and loss of membrane integrity. The recovery of damaged coral tissue likely proceeds by re-epithelialization and zooxanthellae repopulation of gastrodermal cells by adjacent healthy tissue.  相似文献   

2.
Tardigrades inhabiting terrestrial environments exhibit extraordinary resistance to ionizing radiation and UV radiation although little is known about the mechanisms underlying the resistance. We found that the terrestrial tardigrade Ramazzottius varieornatus is able to tolerate massive doses of UVC irradiation by both being protected from forming UVC-induced thymine dimers in DNA in a desiccated, anhydrobiotic state as well as repairing the dimers that do form in the hydrated animals. In R. varieornatus accumulation of thymine dimers in DNA induced by irradiation with 2.5 kJ/m2 of UVC radiation disappeared 18 h after the exposure when the animals were exposed to fluorescent light but not in the dark. Much higher UV radiation tolerance was observed in desiccated anhydrobiotic R. varieornatus compared to hydrated specimens of this species. On the other hand, the freshwater tardigrade species Hypsibius dujardini that was used as control, showed much weaker tolerance to UVC radiation than R. varieornatus, and it did not contain a putative phrA gene sequence. The anhydrobiotes of R. varieornatus accumulated much less UVC-induced thymine dimers in DNA than hydrated one. It suggests that anhydrobiosis efficiently avoids DNA damage accumulation in R. varieornatus and confers better UV radiation tolerance on this species. Thus we propose that UV radiation tolerance in tardigrades is due to the both high capacities of DNA damage repair and DNA protection, a two-pronged survival strategy.  相似文献   

3.
Survival of Shewanella oneidensis MR-1 after UV Radiation Exposure   总被引:2,自引:0,他引:2       下载免费PDF全文
We systematically investigated the physiological response as well as DNA damage repair and damage tolerance in Shewanella oneidensis MR-1 following UVC, UVB, UVA, and solar light exposure. MR-1 showed the highest UVC sensitivity among Shewanella strains examined, with D37 and D10 values of 5.6 and 16.5% of Escherichia coli K-12 values. Stationary cells did not show an increased UVA resistance compared to exponential-phase cells; instead, they were more sensitive at high UVA dose. UVA-irradiated MR-1 survived better on tryptic soy agar than Luria-Bertani plates regardless of the growth stage. A 20% survival rate of MR-1 was observed following doses of 3.3 J of UVC m−2, 568 J of UVB m−2, 25 kJ of UVA m−2, and 558 J of solar UVB m−2, respectively. Photoreactivation conferred an increased survival rate to MR-1 of as much as 177- to 365-fold, 11- to 23-fold, and 3- to 10-fold following UVC, UVB, and solar light irradiation, respectively. A significant UV mutability to rifampin resistance was detected in both UVC- and UVB-treated samples, with the mutation frequency in the range of 10−5 to 10−6. Unlike in E. coli, the expression levels of the nucleotide excision repair (NER) component genes uvrA, uvrB, and uvrD were not damage inducible in MR-1. Complementation of Pseudomonas aeruginosa UA11079 (uvrA deficient) with uvrA of MR-1 increased the UVC survival of this strain by more than 3 orders of magnitude. Loss of damage inducibility of the NER system appears to contribute to the high sensitivity of this bacterium to UVR as well as to other DNA-damaging agents.  相似文献   

4.
Mitochondrial DNA (mtDNA) is different in many ways from nuclear DNA. A key difference is that certain types of DNA damage are not repaired in the mitochondrial genome. What, then, is the fate of such damage? What are the effects? Both questions are important from a health perspective because irreparable mtDNA damage is caused by many common environmental stressors including ultraviolet C radiation (UVC). We found that UVC-induced mtDNA damage is removed slowly in the nematode Caenorhabditis elegans via a mechanism dependent on mitochondrial fusion, fission, and autophagy. However, knockdown or knockout of genes involved in these processes—many of which have homologs involved in human mitochondrial diseases—had very different effects on the organismal response to UVC. Reduced mitochondrial fission and autophagy caused no or small effects, while reduced mitochondrial fusion had dramatic effects.  相似文献   

5.
As a source of agar, the red macroalga Gelidium floridanum is a seaweed of great economic importance. However, it grows in a region exposed to high ultraviolet B radiation (UVBR). Therefore, to study the in vitro effect of UVBR on this plant, apical segments of G. floridanum were cultivated and exposed to photosynthetically active radiation (PAR) at 80?μmol photons m?2?s?1 and PAR + UVBR at 1.6?W?m?2 at 3?h per day for 7?days. The samples were processed for electron microscopy, and agar yield, growth rates, mitochondrial activity, protein levels, chlorophyll a, phycobiliproteins, carotenoids and phenolic compounds, and photosynthetic performance were examined. After 7?days of exposure to PAR + UVBR, G. floridanum experienced ultrastructural damage that was primarily observed in the internal organization of chloroplasts, increased cell wall thickness, as well as increased volume of plastoglobuli and free ribosomes. Moreover, this exposure might have caused photodamage and photoinhibition of photosynthetic pigments (chlorophyll a and phycobiliproteins), leading to a decrease in photosynthetic efficiency, relative electron transport rate, and maximum photosynthetic rate. These phenomena were matched with a corresponding decrease in growth rates and depigmentation, combined with partial necrosis of the apical segments exposed to PAR + UVBR. Additionally, the UVBR-induced damage elicited a marked cellular antioxidant response, possibly as a consequence of free radical generation.  相似文献   

6.
During the Precambrian, ultraviolet (UV) radiation reaching the Earth's surface, including UVC wavelengths (190–280 nm), was considerably higher than present because of the lack of absorbing gases (e.g. O2 and O3) in the atmosphere. High UV flux would have been damaging to photosynthetic organisms exposed to solar radiation. Nevertheless, fossil evidence indicates that cyanobacteria-like ancestors may have evolved as early as 3.5 × 109 yr ago, and were common in shallow marine habitats by 2.5 × 109 years ago. Scytonemin, a cyanobacterial extracellular sheath pigment, strongly absorbs UVC radiation. Exposure to high-irradiance conditions caused cells to synthesize scytonemin and resulted in decreased UVC inhibition of photosynthetic carbon uptake. It was further demonstrated that scytonemin alone was sufficient for substantial protection against UVC damage. This represents the first experimental demonstration of biological protection against UVC radiation in cyanobacteria. These results suggest that scytonemin may have evolved during the Precambrian and allowed colonization of exposed, shallow-water and terrestrial habitats by cyanobacteria or their oxygenic ancestors.  相似文献   

7.
Abstract

The involvement of reactive oxygen species (ROS) in the induction of DNA damage to Escherichia coli cells caused by UVC (254 nm) irradiation was studied. We verified the expression of the soxS gene induced by UVC (254 nm) and its inhibition by sodium azide, a singlet oxygen (1O2) scavenger. Additional results showed that a water-soluble carotenoid (norbixin) protects against the lethal effects of UVC. These results suggest that UVC radiation can also cause ROS-mediated lethality.  相似文献   

8.
A recombination-deficient strain of the phototrophic bacterium Rhodopseudomonas viridis was constructed for the homologous expression of modified photosynthetic reaction center genes. The R. viridis recA gene was cloned and subsequently deleted from the R. viridis genome. The cloned R. viridis recA gene shows high identity to known recA genes and was able to complement the Rec phenotype of a Rhizobium meliloti recA strain. The constructed R. viridis recA strain showed the general Rec phenotype, i.e., increased sensitivity to DNA damage and severely impaired recombination ability. The latter property of this strain will be of advantage in particular for expression of modified, nonfunctional photosynthetic reaction centers which are not as yet available.  相似文献   

9.
The effects of ultraviolet-B (UV-B: 280-320 nm) radiation on the photosynthetic pigments, primary photochemical reactions of thylakoids and the rate of carbon assimilation (Pn) in the cotyledons of clusterbean (Cyamopsis tetragonoloba) seedlings have been examined. The radiation induces an imbalance between the energy absorbed through the photophysical process of photosystem (PS) II and the energy consumed for carbon assimilation. Decline in the primary photochemistry of PS II induced by UV-B in the background of relatively stable Pn, has been implicated in the creation of the energy imbalance. The radiation induced damage of PS II hinders the flow of electron from QA to QB resulting in a loss in the redox homeostasis between the QA to QB leading to an accumulation of QA. The accumulation of QA generates an excitation pressure that diminishes the PS II-mediated O2 evolution, maximal photochemical potential (Fv/Fm) and PS II quantum yield (ΦPS II). While UV-B radiation inactivates the carotenoid-mediated protective mechanisms, the accumulation of flavonoids seems to have a small role in protecting the photosynthetic apparatus from UV-B onslaught. The failure of protective mechanisms makes PS II further vulnerable to the radiation and facilitates the accumulation of malondialdehyde (MDA) indicating the involvement of reactive oxygen species (ROS) metabolism in UV-B-induced damage of photosynthetic apparatus of clusterbean cotyledons.  相似文献   

10.
Interplant communication of stress via volatile signals is a well-known phenomenon. It has been shown that plants undergoing stress caused by pathogenic bacteria or insects generate volatile signals that elicit defense response in neighboring naïve plants.1 Similarly, we have recently shown that naïve plants sharing the same gaseous environment with UVC-exposed plants exhibit similar changes in genome instability as UVC-exposed plants.2 We found that methyl salicylate (MeSA) and methyl jasmonate (MeJA) serve as volatile signals communicating genome instability (as measured by an increase in the homologous recombination frequency). UVC-exposed plants produce high levels of MeSA and MeJA, a response that is missing in an npr1 mutant. Concomitantly, npr1 mutants are impaired in communicating the signal leading to genome instability, presumably because this mutant does not develop new necrotic lesion after UVC irradiation as observed in wt plants.2 To analyze the potential biological significance of such plant-plant communication, we have now determined whether bystander plants that receive volatile signals from UVC-irradiated plants, become more resistant to UVC irradiation or infection with oilseed rape mosaic virus (ORMV). Specifically, we analyzed the number of UVC-elicited necrotic lesions, the level of anthocyanin pigments, and the mRNA levels corresponding to ORMV coat protein and the NPR1-regulated pathogenesis-related protein PR1 in the irradiated or virus-infected bystander plants that have been previously exposed to volatiles produced by UVC-irradiated plants. These experiments showed that the bystander plants responded similarly to control plants following UVC irradiation. Interestingly, however, the bystander plants appeared to be more susceptible to ORMV infection, even though PR1 mRNA levels in systemic tissue were significantly higher than in the control plants, which indicates that bystander plants could be primed to strongly respond to bacterial infection.  相似文献   

11.
The photosynthetic characteristics through P-E curves and the effect of UV radiation on photosynthesis (measured as rapid adjustment of photochemistry, F v/F m) and DNA damage (as formation of CPDs) were studied in field specimens of green, red and brown algae collected from the eulittoral and sublittoral zone of Fildes Peninsula (King George Island, Antarctic). The content of phenolic compounds (phlorotannins) and the antioxidant activity were also studied in seven brown algae from 0 to 40 m depth. The results indicated that photosynthetic efficiency (α) was high and did not vary between different species and depths, while irradiances for saturation (E k) averaged 55 μmol m?2 s?1 in subtidal and 120 μmol m?2 s?1 in eulittoral species. The studied species exhibited notable short-term UV tolerance along the vertical zonation. In intertidal and shallow water species, decreases in F v/F m by UV radiation were between 0 and 18 %, while in sublittoral algae, decreases in F v/F m varied between 3 and 35 % relative to PAR treatment. In all species, recovery was high averaging 84–100 %. The formation of CPDs increased (15–150 %) under UV exposure, with the highest DNA damage found in some subtidal species. Phlorotannin content varied between 29 mg g?1 DW in Ascoseira mirabilis from 8 m depth and 156 mg g?1 DW in Desmarestia menziesii from 17 m depth. In general, phlorotannin concentrations were constitutively high in deeper sublittoral brown algae, which were correlated with higher antioxidant activities of algal extracts and low decreases in photosynthesis. UV radiation caused a strong decrease in phlorotannin content in the deep-water Himantothallus grandifolius, whereas in D. menziesii and Desmarestia anceps, induction of the synthesis of phlorotannins by UV radiation was observed. The antioxidant activity was in general less affected by UV radiation.  相似文献   

12.
Purα is a nucleic acid-binding protein with DNA-unwinding activity, which has recently been shown to have a role in the cellular response to DNA damage. We have investigated the function of Purα in Ultraviolet-C (UVC) radiation-induced DNA damage and nucleotide excision repair (NER). Mouse embryo fibroblasts from PURA-/- knockout mice, which lack Purα, showed enhanced sensitivity to UVC irradiation as assessed by assays for cell viability and clonogenicity compared to Purα positive control cultures. In reporter plasmid reactivation assays to measure the removal of DNA adducts induced in vitro by UVC, the Purα-negative cells were less efficient in DNA damage repair. Purα-negative cells were also more sensitive to UVC-induced DNA damage measured by Comet assay and showed a decreased ability to remove UVC-induced cyclobutane pyrimidine dimers. In wild-type mouse fibroblasts, expression of Purα is induced following S-phase checkpoint activation by UVC in a similar manner to the NER factor TFIIH. Moreover, co-immunoprecipitation experiments showed that Purα physically associates with TFIIH. Thus, Purα has a role in NER and the repair of UVC-induced DNA damage.Key words: purα, ultraviolet radiation, DNA damage, DNA repair, nucleotide excision repair, TFIIH  相似文献   

13.
Solar ultraviolet B (UVB) irradiance at the Earth’s surface is increasing due to anthropogenic influences. To evaluate the effects of enhanced UVB radiation on photosynthetic characteristics of the marine diatom Phaeodactylum tricornutum, the species was exposed to four levels of UVB radiation, 0, 0.25, 0.75, and 1.50 KJ m?2 day?1 for 7 days. Effects of UVB stress on net photosynthetic rate, net respiration rate, variable chlorophyll (Chl) fluorescence parameters, Chl a and carotenoid contents, and UV-absorbing compounds (UVACs) were investigated. Results showed that there were no significant differences in terms of net respiration rate or maximal photochemical efficiency of photosystem II (Fv/Fm) between the treatments in the short or long term. However, enhanced UVB radiation at an intensity of 0.16 W m?2 had a negative effect on the net photosynthetic rate, electron transport rate, and on the pathway of excess energy dissipation over the short term (1 to 5 days). Carotenoid and UVACs content increased under UVB radiation. Photosynthetic parameters were unaffected by UVB radiation on the seventh day indicating that P. tricornutum can adapt to UVB radiation in the long term. Results of the present study indicate that there is a dynamic balance between damage and adaptation in microalgae that enables them to adapt to UVB-induced photosystem alterations during both short-term and long-term exposure.  相似文献   

14.
《Autophagy》2013,9(12):1822-1823
Mitochondrial DNA (mtDNA) is different in many ways from nuclear DNA. A key difference is that certain types of DNA damage are not repaired in the mitochondrial genome. What, then, is the fate of such damage? What are the effects? Both questions are important from a health perspective because irreparable mtDNA damage is caused by many common environmental stressors including ultraviolet C radiation (UVC). We found that UVC-induced mtDNA damage is removed slowly in the nematode Caenorhabditis elegans via a mechanism dependent on mitochondrial fusion, fission, and autophagy. However, knockdown or knockout of genes involved in these processes—many of which have homologs involved in human mitochondrial diseases—had very different effects on the organismal response to UVC. Reduced mitochondrial fission and autophagy caused no or small effects, while reduced mitochondrial fusion had dramatic effects.  相似文献   

15.
There are many complex interactions between transposable elements (TEs) and host genomes. Environmental changes that induce stressful conditions help to contribute for increasing complexity of these interactions. The transposon mariner-Mos1 increases its mobilization under mild heat stress. It has putative heat shock elements (HSEs), which are probably activated by heat shock factors (HSFs). Ultraviolet radiation (UVC) is a stressor that has been suggested as able to activate heat shock protein genes (Hsp). In this study, we test the hypothesis that if UVC induces Hsp expression, as heat does, it could also promote mariner-Mos1 transposition and mobilization. The Drosophila simulans white-peach is a mutant lineage that indicates the mariner-Mos1 transposition phenotypically through the formation of mosaic eyes. This lineage was exposed to UVC or mild heat stress (28 °C) in order to evaluate the induction of mariner-Mos1 expression by RT-qPCR, as well as the mariner-Mos1 mobilization activity based on the count number of red spots in the eyes. The effects of both treatments on the developmental time of flies and cell cycle progression were also investigated. Both the analysis of eyes and mariner-Mos1 gene expression indicate that UVC radiation has no effect in mariner-Mos1 transposition, although heat increases the expression and mobilization of this TE soon after the treatment. However, the expression of Hsp70 gene increased after 24 h of UVC exposure, suggesting different pathway of activation. These results showed that heat promotes mariner-Mos1 mobilization, although UVC does not induce the expression or mobilization of this TE.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0611-2) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
DNA replication and DNA repair are essential cell cycle steps ensuring correct transmission of the genome. The feedback replication control system links mitosis to completion of DNA replication and partially overlaps the radiation checkpoint control. Deletion of the chkl/rad27 gene abolishes the radiation but not the replication feedback control. Thermosensitive mutations in the DNA polymerase λ, cdc18 or cdc20 genes lead cells to arrest in the S phase of the cell cycle. We show that strains carrying any of these mutations enter lethal mitosis in the absence of the radiation checkpoint chk1/rad27. We interpret these data as an indication that an assembled replisome is essential for replication dependent control of mitosis and we propose that the arrest of the cell cycle in the thermosensitive mutants is due to the chk1 +/rad27 + pathway, which monitors directly DNA for signs of damage.  相似文献   

18.
在增强UV-B辐射下,以3年生兴安落叶松幼苗为实验材料,研究了外源NO供体硝普钠(Sodium nitroprusside,SNP)对幼苗的光合色素(Chla、Chlb和Car)和叶绿素荧光参数的影响。方差分析结果表明0.5 mmol·L-1的SNP对增补UV B胁迫下的兴安落叶松幼苗产生显著影响。0.5 mmol·L-1的SNP能够显著抑制增补UV-B辐射后光合色素、Fv/FmΦPSⅡFv′/Fm′和qP的明显下降以及Chla /Chlb、FoNPQ的升高。表明了外源NO能够减轻UV-B辐射胁迫下兴安落叶松幼苗光合反应中心的生理损伤,从而增强兴安落叶松幼苗对增补UV-B辐射胁迫环境的适应能力。  相似文献   

19.
The photosynthetic performance of Microcystis aeruginosa FACHB 854 during the process of UV-B exposure and its subsequent recovery under photosynthetic active radiation (PAR) was investigated in the present study. Eight hours UV-B radiation (3.15 W m−2) stimulated the increase of photosynthetic pigments content at the early stage of UV-B exposure followed by a significant decline. It suggested that UV-B damage was not an immediate process, and there existed a dynamic balance between damage and adaptation in the exposed cells. Short-term UV-B exposure severely inhibited the photosynthetic capability, but it could restore quickly after being transferred to PAR. Further investigations revealed that the PS II of M. aeruginosa FACHB 854 was more sensitive to UV-B exposure than PS I, and the oxygen-evolving complex of PS II was an important damage target of UV-B. The inhibition of photosynthetic performance caused by UV-B could be recovered to 90.9% of pretreated samples after 20 h exposure at low PAR, but it could not be recovered in the dark as well as under low PAR in the presence of Chloromycetin. It can be concluded that PAR and de novo protein synthesis were essential for the recovery of UV-B-damaged photosynthetic apparatus.  相似文献   

20.
DSBs are harmful lesions produced through endogenous metabolism or by exogenous agents such as ionizing radiation, that can trigger genomic rearrangements. We have recently shown that exposure to 2 Gy of X-rays has opposite effects on the induction of Shh-dependent MB in NHEJ- and HR-deficient Ptch1+/− mice. In the current study we provide a comprehensive link on the role of HR/NHEJ at low doses (0.042 and 0.25 Gy) from the early molecular changes through DNA damage processing, up to the late consequences of their inactivation on tumorigenesis. Our data indicate a prominent role for HR in genome stability, by preventing spontaneous and radiation-induced oncogenic damage in neural precursors of the cerebellum, the cell of origin of MB. Instead, loss of DNA-PKcs function increased DSBs and apoptosis in neural precursors of the developing cerebellum, leading to killing of tumor initiating cells, and suppression of MB tumorigenesis in DNA-PKcs-/-/Ptch1+/− mice. Pathway analysis demonstrates that DNA-PKcs genetic inactivation confers a remarkable radiation hypersensitivity, as even extremely low radiation doses may deregulate many DDR genes, also triggering p53 pathway activation and cell cycle arrest. Finally, by showing that DNA-PKcs inhibition by NU7441 radiosensitizes human MB cells, our in vitro findings suggest the inclusion of MB in the list of tumors beneficiating from the combination of radiotherapy and DNA-PKcs targeting, holding promise for clinical translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号