首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of allelopathy in biochemical ecology: Experience from Taiwan   总被引:2,自引:0,他引:2  
Allelopathic compounds, including fatty acids, phenolics, flavonoids, terpenoids, and alkaloids, have been found in various plants and soils of different habitats in Taiwan since 1972. For example, in a monoculture of rice plants, phytotoxins were produced during the decomposition of rice residues in soil, suppressed the growth of rice seedlings, and reduced the numbers of tillers and panicles, leading to yield reduction. The allelopathic metabolites are also affected by environmental factors, such as oxygen, temperature, soil moisture, microbial activity, and levels of fertilizers in soil, and allelopathy was pronounced in areas where environmental stresses were severe. Substantial amounts of phytotoxic mimosine and phenolics were released into soil by plant parts of Leucaenaleucocephala, and these suppressed the growth of many understory species except that of L.leucocephala itself. A unique pattern of absence of understory plants was ubiquitous beneathPhyllostachys edulis, due primarily to an allelopathic effect. In a forest pasture intercropping, an aggressive kikuyu grass was planted in a deforested land where Chinese fir grew previously, to help in understanding the mechanism of biological interactions between plants. Aqueous soil leachate and extracts of the grass significantly, retarded the growth of local weeds but not that of the Chinese fir. Allelopathy thus plays an appreciable role in natural vegetation and plantations in Taiwan.  相似文献   

2.
Tang CS  Young CC 《Plant physiology》1982,69(1):155-160
Collection of allelopathic chemicals from the undisturbed plant root system is difficult because of their low concentrations and the high level of contaminants in growth media such as soil. A new approach for the continuous trapping of quantities of extracellular chemicals from donor plants is described. Bigalta limpograss (Hemarthria altissima), a tropical forage with allelopathic activities, was established in sand culture. Nutrient solution was circulated continuously through the root system and a column containing XAD-4 resin. Extracellular hydrophobic metabolites were selectively adsorbed by the resin, while inorganic nutrients were recycled to sustain plant growth. Columns were eluted with methanol and the eluate separated into neutral, acidic, and basic fractions. Bioassays of trapped root exudates using lettuce seed combined with paper and thin layer chromatography showed that the inhibitors were mainly phenolic compounds. The active neutral fraction was methylated and analyzed by gas chromatography-mass spectrometry. Twelve compounds were identified, with two additional compounds tentatively identified. 3-Hydroxyhydrocinnamic, benzoic, phenylacetic, and hydrocinnamic acids were the major rhizospheric compounds with known growth regulatory activities.  相似文献   

3.
Yang Y  Wu FZ 《应用生态学报》2011,22(10):2627-2634
A pot experiment was conducted to study the effects of intercropping various Chinese onion cultivars of different allelopathic potential on the cucumber growth and rhizospheric soil environment. When intercropped with high allelopathic Chinese onion cultivars, the EC value and peroxidase activity of cucumber rhizospheric soil decreased, while the pH value, invertase and catalase activities, and bacterial community diversity increased. The cloning and sequencing results indicated that most DGGE bands amplified from cucumber rhizospheric soil samples showed a high homology to uncultured bacterial species. The common bands were affiliated with Actinobacteria and Proteobacteria, and the differential bacteria bands were affiliated with Proteobacteria and Anaerolineaceae. Rhodospirillales and Acidobacteria were only found in the cucumber rhizospheric soil intercropped with low allelopathic Chinese onion cultivars. Correlation analysis showed that there were significant positive correlations between rhizospheric soil urease activity and cucumber seedlings height, total dry biomass, leaf area, and DGGE band number. It was suggested that intercropping high allelopathic Chinese onion cultivars could establish a good rhizospheric soil micro-environment for cucumber growth, and promote the growth of cucumber seedlings markedly.  相似文献   

4.
Wu L  Wang H  Zhang Z  Lin R  Zhang Z  Lin W 《PloS one》2011,6(5):e20611

Background

The consecutive monoculture for most of medicinal plants, such as Rehmannia glutinosa, results in a significant reduction in the yield and quality. There is an urgent need to study for the sustainable development of Chinese herbaceous medicine.

Methodology/Principal Findings

Comparative metaproteomics of rhizosphere soil was developed and used to analyze the underlying mechanism of the consecutive monoculture problems of R. glutinosa. The 2D-gel patterns of protein spots for the soil samples showed a strong matrix dependency. Among the spots, 103 spots with high resolution and repeatability were randomly selected and successfully identified by MALDI TOF-TOF MS for a rhizosphere soil metaproteomic profile analysis. These proteins originating from plants and microorganisms play important roles in nutrient cycles and energy flow in rhizospheric soil ecosystem. They function in protein, nucleotide and secondary metabolisms, signal transduction and resistance. Comparative metaproteomics analysis revealed 33 differentially expressed protein spots in rhizosphere soil in response to increasing years of monoculture. Among them, plant proteins related to carbon and nitrogen metabolism and stress response, were mostly up-regulated except a down-regulated protein (glutathione S-transferase) involving detoxification. The phenylalanine ammonia-lyase was believed to participate in the phenylpropanoid metabolism as shown with a considerable increase in total phenolic acid content with increasing years of monoculture. Microbial proteins related to protein metabolism and cell wall biosynthesis, were up-regulated except a down-regulated protein (geranylgeranyl pyrophosphate synthase) functioning in diterpenoid synthesis. The results suggest that the consecutive monoculture of R. glutinosa changes the soil microbial ecology due to the exudates accumulation, as a result, the nutrient cycles are affected, leading to the retardation of plant growth and development.

Conclusions/Significance

Our results demonstrated the interactions among plant, soil and microflora in the proteomic level are crucial for the productivity and quality of R. glutinosa in consecutive monoculture system.  相似文献   

5.
Root flavonoids     
Informations on root flavonoids have been extensively reviewed and their functional diversity critically appraised. Root flavonoids play significant roles in protecting the plants against pests and diseases, regulating root growth and functions, influencing different aspects of nitrogen cycle and exerting allelopathic growth effects. They also constitute an essential source of Pharmaceuticals. An exhaustive list of flavonoids which are of significance in relation to these properties has been compiled. A thorough understanding of the flavonoid composition, level, metabolism and regulation in the roots of various plants may help us in developing several applied topics. Safe and specific chemicals against root pests; chemicals regulating root growth and mineral nutrition; plant varieties resistant to root pests and adverse allelopathic effects; an improved nitrogen economy in agroecosystems; desirable varieties of medicinal plants, in whose roots flavonoids are the active principles; in vitro systems for flavonoid production obtained from root cultures, at a commercial scale.  相似文献   

6.
盆栽试验以黄瓜为主栽作物,分蘖洋葱为套作作物,研究了套作不同化感潜力分蘖洋葱对黄瓜生长及土壤微环境的影响.结果表明:与化感潜力强的分蘖洋葱套作,黄瓜根际土壤电导率降低、pH值提高;根际土壤过氧化氢酶和转化酶活性提高,过氧化物酶活性降低;根际土壤细菌丰富度增加.DGGE条带测序显示,黄瓜根际土壤细菌大多与不可培养的细菌种属具有较高的同源性,共有条带的测序比对推测为放线菌纲和变形菌纲,差异条带的测序比对推测为变形菌纲和酸杆菌纲,红螺旋菌目、酸杆菌属只出现在与化感潜力弱的分蘖洋葱套作的黄瓜根际土壤中.相关分析表明,土壤脲酶与黄瓜幼苗株高、全株干质量、叶面积、DGGE条带数呈显著正相关.综上,与化感潜力强的分蘖洋葱套作,可为黄瓜生长创造良好的根际微环境,显著促进黄瓜幼苗生长.  相似文献   

7.
甘肃省中部沿黄灌区是全国重要的加工型马铃薯生产基地,然而因集约化生产带来的连作障碍问题已经严重影响到当地马铃薯种植业的健康发展。结合田间试验和相关的室内分析,从马铃薯块茎产量和品质、植株生理特征和土壤真菌群落结构等角度,初步评估土壤灭菌和生物有机肥联用(Ammonia Disinfection plus Bio-organic Fertilizer Regulation,ABR)对马铃薯连作障碍的防控效果。同对照相比,ABR处理的块茎产量和商品薯率分别显著增加约71.1%—152.1%和39.2%—53.3%,但块茎化学品质变化不大。ABR处理叶绿素含量和根系活力较CK均显著增加,而叶片和根系丙二醛含量显著下降。PCR-DGGE分析发现,ABR处理显著影响了马铃薯连作土壤的真菌群落结构,表现为真菌群落的多样性指数较CK相比显著下降。ABR处理还有效抑制了土传病害的滋生,植株发病率和收获后的病薯率较CK分别显著下降约67.2%—82.2%和69.1%—70.5%。采用Real-time PCR评估连作土壤中3种优势致病真菌的数量变化,显示ABR处理下立枯丝核菌、茄病镰刀菌和接骨木镰刀菌的数量在生育期内较CK均有不同程度的下降。综合来看,土壤灭菌和生物有机肥联用技术在防控甘肃省中部沿黄灌区马铃薯连作障碍上具有较大的应用潜力,而对土传病害的抑制和微生物群落结构的改善是其主要的作用机理。  相似文献   

8.
Allelopathic compounds are metabolites released from plants that might be beneficial or detrimental to the growth of receptor plants. These compounds are involved in the environmental complex of managed or natural ecosystems. Allelopathic compounds have been shown to play important roles in the determination of plant diversity, dominance, succession, and climax of natural vegetation and in the plant productivity of agroecosystems. The overuse of synthetic agrochemicals often causes environmental hazards, an imbalance of soil microorganisms, nutrient deficiency, and change of soil physicochemical properties, resulting in a decrease of crop productivity. The incorporation of allelopathic substances into agricultural management may reduce the use of synthetic herbicides, fungicides, and insecticides and lessen environmental deterioration. Scientists in many different habitats around the world have demonstrated the above examples previously. It is known that most volatile compounds, such as terpenoids, are released from plants in drought areas. In contrast, water-borne phytotoxins, such as phenolics, flavonoids, or alkaloids, are released from plants in humid zone areas. Both allelopathy and autointoxication play an important mechanism in regulating plant biodiversity and plant productivity. A unique case study of a pasture-forest intercropping system, which is particularly emphasized here, could be used as a model for forest management. After the deforestation of coniferous or hardwood forests, a pasture grass, kikuyu grass (Pennisetum clandestinum), was transplanted onto the land. The grass was quickly established within 6 months. Significant suppression of weed growth by the kikuyu grass was found; however, the growth of coniferous or hardwood plants was not suppressed but stimulated. This example as well as others described in this text clearly indicate that allelopathy plays a significant role in sustainable agriculture. Nevertheless, room for allelopathic research in the next century is available for biologists, biochemists, biotechnologists, and chemists. Future allelopathic research should focus on the following tasks: (1) a continuous survey of potential allelochemicals from natural vegetation or microorganisms, (2) the establishment of practical ways of using allelochemicals in the field, (3) to understand the mode of action of allelopathic chemicals in receptor organisms, (4) to understand the role of allelopathic chemicals in biodiversity and ecosystem function, (5) to explore advanced biotechnology for allocating allelopathic chemical genes in plants or microorganisms for biological control, and (6) to challenge the natural product chemists to develop a better methodology for isolating allelopathic compounds or their degraded compounds from the environment, particularly the soil environment.  相似文献   

9.
地黄为玄参科多年生草本药用植物,以块根入药,是我国著名的大宗药材.但是地黄在农业生产过程中存在严重的连作障碍问题,造成产量和品质急剧下降.细菌作为叶际微生物中最为丰富的一类,对宿主植物的生长发育与健康至关重要.叶际细菌区系研究为探索连作障碍形成机制及其消减措施提供了一个全新视角,同时差异菌群也可作为连作障碍发生的指示菌.本研究采用16S rDNA基因高通量测序结合传统可培养法分析地黄连作下叶际细菌群落结构及多样性变化.结果表明: 地黄连作导致叶际细菌群落结构发生明显变化,重茬地黄和病株地黄的叶际细菌群落结构较为相似,聚为一类,并明显区别于头茬地黄.同时,重茬地黄和病株地黄叶际细菌群落的均匀度指数、Shannon多样性指数、Simpson多样性指数均显著低于头茬地黄.物种注释分析显示,地黄叶际细菌主要由变形菌门(91.2%)、厚壁菌门(5.1%)和放线菌门(3.7%)组成.韦恩图分析发现,连作下地黄叶际细菌种类变化不大,但是结合相对含量来看,地黄连作导致叶际变形菌门含量增加,而厚壁菌门和放线菌门下降.在属水平上,头茬地黄叶际的微小杆菌属、芽孢杆菌属、节细菌属等潜在有益菌相对含量显著高于重茬地黄和病株地黄,而假单胞菌属呈现相反的变化趋势.传统可培养法结合致病性验证发现,在病株地黄叶片上广泛分离到的变形假单胞菌D9对地黄叶片表现出较强的侵染致病性.综上可见,地黄连作下叶际细菌群落结构发生偏移,导致有益菌含量下降而病原菌含量上升,造成连作地黄叶片病症频发,加剧了地黄再植病害的发生.  相似文献   

10.
The flavonoid pathway produces a diverse array of plant compounds with functions in UV protection, as antioxidants, pigments, auxin transport regulators, defence compounds against pathogens and during signalling in symbiosis. This review highlights some of the known function of flavonoids in the rhizosphere, in particular for the interaction of roots with microorganisms. Depending on their structure, flavonoids have been shown to stimulate or inhibit rhizobial nod gene expression, cause chemoattraction of rhizobia towards the root, inhibit root pathogens, stimulate mycorrhizal spore germination and hyphal branching, mediate allelopathic interactions between plants, affect quorum sensing, and chelate soil nutrients. Therefore, the manipulation of the flavonoid pathway to synthesize specifically certain products has been suggested as an avenue to improve root-rhizosphere interactions. Possible strategies to alter flavonoid exudation to the rhizosphere are discussed. Possible challenges in that endeavour include limited knowledge of the mechanisms that regulate flavonoid transport and exudation, unforeseen effects of altering parts of the flavonoid synthesis pathway on fluxes elsewhere in the pathway, spatial heterogeneity of flavonoid exudation along the root, as well as alteration of flavonoid products by microorganisms in the soil. In addition, the overlapping functions of many flavonoids as stimulators of functions in one organism and inhibitors of another suggests caution in attempts to manipulate flavonoid rhizosphere signals.  相似文献   

11.
为研究不同药用植物根际土壤中的原核微生物多样性,分别采集白术(Atractylodes macrocephala)、白芍(Paeonia sterniana)、牡丹(Paeonia suffruticosa)、玄参(Scrophularia ningpoensis)四种药用植物的根际土壤以及非种植区的土壤,针对16S rRNA基因的V3~V4区进行测序,分析土壤细菌群落的组成。结果表明,药用植物根际土壤中的细菌群落多样性指数显著高于非种植区土壤。五组样本的优势类群差异不大,总体相对丰度较高的有变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadetes)、绿弯菌门(Chloroflexi)等,药用植物根际中的放线菌相对丰度高于非种植区。属水平上四种药用植物根际细菌和非种植区的群落结构有较大差异,四种中药材的根际土壤中各自富集了特异性的有益细菌属。药用植物根际土壤中的NMD1、Dongia、Gaiella、Streptomyces等相对丰度高于非种植区,而非种植区土壤中Lysoba...  相似文献   

12.
Allelopathy has been suggested as a mechanism promoting the monoculture formation of some invasive exotic plants. Previous studies have shown that hydrophobic extracts of the roots and soil of exotic bitou bush (Chrysanthemoides monilifera spp. rotundata (DC.) T. Norl.) inhibited the seedling growth of five Australian native plants, including the dominant acacia (Acacia longifolia var. sophorae (Labill.) F. Muell.). Based on this finding, we compared the hydrophobic root and soil chemical profiles of bitou bush and acacia to determine whether bitou bush roots release allelopathic compounds that are novel to the invaded system. We detected three compounds that were exclusive to the bitou bush root and soil, and seven compounds that were common to the bitou bush and acacia roots but only present in the bitou bush soil. The compounds unique to the bitou bush invaded soil were all sesqui- and diterpenes. Several of these compounds were found to inhibit the seedling growth of a native sedge, Isolepis nodosa (Rott.) R. Br. Of particular interest are the sesquiterpenes: β-maaliene, α-isocomene, β-isocomene, δ-cadinene, 5-hydroxycalamenene and 5-methoxycalamenene which were found in high concentrations in the bitou bush root and soil extracts and exhibited phytotoxic activity. Therefore, we present evidence to suggest that bitou bush exudes low molecular weight volatile compounds into the soil which inhibit native plant seedling growth. The reduced establishment of native plants via allelopathy is likely to create space and contribute to the invasion of bitou bush on the eastern Australian coast.  相似文献   

13.
Indoor experiments demonstrated that allelopathic potential of rosette and flowering plants of qort is an important factor explaining the growth reduction of its associated species. Aqueous tissue extracts of flowering plants exhibited strong inhibitory effects on the germination percentage and radicle growth rate of the tested species as compared with those of vegetative plants. Under laboratory conditions, this inhibition was in agreement with toxicity assessments of soil samples collected from the rhizosphere of T. resupinatum L., where shoot and root dry mass of the tested species were significantly reduced. Detoxification of allelochemicals by presence of activated carbon can eliminate the inhibitory effects of the different extracts. This technique clarifies the occurrence of allelopathic interference by qort on seed germination and seedling growth, and hence suspects the allelopathic potential of qort in the growth reduction of associate species under field conditions along with competition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The effect of tall fescue turf on growth, flowering, nodulation, and nitrogen fixing potential of Lupinus albifrons Benth. was examined for greenhouse and field grown plants. No allelopathic effect was observed for lupine plants treated with tall fescue leachates. The nitrogen-fixing potential measured by nodule dry weight and acetylene reduction rates was not significantly affected by tall fescue turf.Both the greenhouse and field studies showed that the growth, sexual reproductive allocation and number of inflorescences were significantly reduced when lupine plants were grown with tall fescue. The root-length densities of tall fescue turf and lupine monoculture were measured. The tall fescue turf had 20 times higher root-length density (20 cm cm-3 soil) than the lupine plant monoculture. This suggests that intense competition at the root zone may be a dominant factor which limits the growth of the lupine plants.The flowering characters of the lupine plants were improved by phosphorus fertilization. Transplanting of older lupine plants into the turf substantially alleviated the tall fescue turf competitive effect.  相似文献   

15.
冷蒿对三种禾本科植物种子萌发和幼苗生长的化感作用   总被引:6,自引:1,他引:6  
Li XF  Wang J  Xu WB  Wang K 《应用生态学报》2010,21(7):1702-1708
研究了冷蒿茎叶水浸提液及冷蒿斑块土壤对羊草草原3种禾本科植物(羊草、克氏针茅和糙隐子草)种子萌发及幼苗生长的影响.结果表明:冷蒿茎叶水浸提液使受试植物种子的发芽指数降低,平均发芽时间延长.羊草、克氏针茅和糙隐子草幼苗苗高及克氏针茅幼苗根长均受冷蒿茎叶水浸提液抑制;浸提液浓度≥0.075g.ml-1时显著抑制羊草幼苗根长生长,≤0.05g.ml-1时则无显著影响;而茎叶水浸提液对糙隐子草幼苗根长有"低促高抑"的作用.冷蒿斑块土壤抑制受试植物幼苗生长;3种植物对冷蒿化感效应的敏感性依次为克氏针茅羊草糙隐子草,且幼苗根长的敏感性均大于苗高.  相似文献   

16.
In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system.  相似文献   

17.
目的研究三七重茬根际土壤中化感物质的组成及其对病原微生物的化感作用。方法采用乙酸乙酯提取三七重茬根际土壤中的化感物质,利用GC-MS对萃取液进行物质组成分析,并研究检测中出现的特征性化感物质对羟基苯甲酸、邻苯二甲酸二异丁酯对三七根腐病菌(F.oxysporum Schlecht)的化感作用。结果采集的三七重茬土壤中共检测到29种化感物质,其中2种特征性化感物质对羟基苯甲酸、邻苯二甲酸二异丁酯对三七病原菌的生长呈现低促高抑的现象,且当对羟基苯甲酸浓度为5mmol/L时能促进病菌小孢子的产生。结论检测到的化感物质组分为苯甲酸及其衍生物类、酚类、酯类、饱和烃类等物质。这些物质在低浓度时有利于病原菌的生长,对病害的发生具有促进作用。  相似文献   

18.
S. Shi  L. Tian  L. Ma  C. Tian 《Microbiology》2018,87(3):425-436
Medicinal plants are the basic materials of traditional Chinese medicine. Soil characteristics and microbial contribution play important roles in the growth and product quality of medicinal plants, but the link between them in the rhizosphere of medicinal plants has been overlooked. Accordingly, Mentha haplocalyx, Perilla frutescens, Glycyrrhiza uralensis, and Astragalus membranaceus, four plants used in traditional Chinese medicines, were investigated in this study in order to elucidate bacterial and arbuscular mycorrhizal fungal (AMF) diversity in the rhizosphere and its possible association with soil quality. DGGE-based 16S rRNA and 18S rRNA gene sequencing results indicated that the diversity of both bacteria and AMF in Glycyrrhiza uralensis and Astragalus membranaceus was significantly higher than those in Mentha haplocalyx and Perilla frutescens, suggesting that medicinal plants have different preferences even under the same conditions. In addition, enzymatic activities and nutrition were enhanced in the rhizospheric soil of Mentha haplocalyx and Perilla frutescens, and the correlation among AMF diversity, soil enzymatic activities and nutrition was confirmed using RDA analysis. These results suggest the potential to grow medicinal plants with a reasonable rotation or intercrop in order to maintain long-term continuous soil development.  相似文献   

19.
周旭  胡亚萍  葛晓敏  陈水飞  马方舟  丁晖 《广西植物》2020,40(12):1740-1754
为探讨南美天胡荽对其他植物种子萌发的影响以及筛选影响其他植物的主要化合物,该文采用种子萌发试验、气相色谱-质谱联用以及液相色谱-质谱联用的方法,分析了南美天胡荽不同溶剂浸提液对种子萌发的影响、南美天胡荽植株及其根际土壤浸提液成分。结果表明:(1)南美天胡荽不同溶剂浸提物均具有一定程度的抑制种子萌发作用。(2)气相色谱-质谱分析下,南美天胡荽植株水浸提液中共分离鉴定了35种化合物,其中,邻苯二甲酸二丁酯(15.2%)、10,15-十八烷二元酸(8.58%)、2,4-二叔丁基苯酚(6.81%)相对含量最高; 根际土壤水浸提液中共分离鉴定了17种化合物,其中,油酸酰胺(26.47%)、正二十七烷(9.63%)、十六酸乙酯(4.83%)相对含量最高。(3)液相色谱-质谱分析下,南美天胡荽植株水浸提液共分离鉴定了109种化合物,ESI+模式下,L-苯丙氨酸(3 483.99 ng·mg-1)、木犀草素(2 306.64 ng·mg-1)含量最多,ESI-模式下,右旋奎宁酸(21 827.71 ng·mg-1)、绿原酸(12 589.25 ng·mg-1)含量最多; 根际土壤水浸提液中共分离鉴定了93种化合物,ESI+模式下,丁酸(7 660.53 ng·mg-1)、棕榈酰胺(3 200.36 ng·mg-1)含量最多,ESI-模式下,正二十八酸(18 605.35 ng·mg-1)、蔗糖(12 183.23 ng·mg-1)含量最多。(4)南美天胡荽的潜在化感物质主要为脂肪酸类、酰胺类、酯类、芳香酸类化合物,而土壤中直接起化感作用的物质可能为丁酸、正二十八酸、羟基乙酸、油酸酰胺、棕榈酰胺、十六酸乙酯、苯甲酸,其中脂肪酸类化合物输入可能来源于南美天胡荽、土壤微生物和土壤动物,酰胺类、酯类、芳香类化合物则更可能来源于南美天胡荽植株。  相似文献   

20.
众所周知,固着生长的植物经常受到环境中各种生物和非生物胁迫的威胁。所以在漫长的进化过程中,植物必须将多样的环境信号整合到其发育过程中,以实现适应性形态的发生和代谢途径的精确调控,最终使植物完成整个生长周期。研究显示,苯丙烷代谢作为植物重要的次级代谢途径之一,其代谢产物,例如木质素、孢粉素、花青素和有机酸等,在调控植物适应性生长的过程中发挥着重要功能。特别是在药用植物中,苯丙烷代谢还与众多药用活性成分的合成息息相关,几乎所有包含苯丙烷骨架的天然药效成分均由苯丙烷代谢途径直接或间接合成,例如黄酮类、萜类和酚类等。此外,经苯丙烷代谢途径产生的一些次级代谢产物还能由植物根系外泌到周际土壤中,通过改变根系微生物的菌群生态,而影响植物生长和抵抗生物或非生物胁迫的能力。同时,苯丙烷代谢介导的这种植物-微生物互作也与药用植物的道地品质密不可分。本文综述了近年来植物苯丙烷代谢途径的最新研究进展,重点对该代谢途径中代谢产物的生理功能及表达调控机制进行了介绍,以期更深入地理解药用植物苯丙烷代谢与药材性状之间的潜在关系,旨在指导优良中草药的遗传育种,以进一步促进我国中医药事业的蓬勃发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号