首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin and hypertonicity each increase the content of GLUT4 glucose transporters at the surface of muscle cells. Insulin enhances GLUT4 exocytosis without diminishing its endocytosis. The insulin but not the hypertonicity response is reduced by tetanus neurotoxin, which cleaves vesicle-associated membrane protein (VAMP)2 and VAMP3, and is rescued upon introducing tetanus neurotoxin-resistant VAMP2. Here, we show that hypertonicity enhances GLUT4 recycling, compounding its previously shown ability to reduce GLUT4 endocytosis. To examine whether the canonical soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) mechanism is required for the plasma membrane fusion of the tetanus neurotoxin-insensitive GLUT4 vesicles, L6 myoblasts stably expressing myc-tagged GLUT4 (GLUT4myc) were transiently transfected with dominant negative N-ethylmaleimide-sensitive factor (NSF) (DN-NSF) or small-interfering RNA to tetanus neurotoxin-insensitive VAMP (TI-VAMP siRNA). Both strategies markedly reduced the basal level of surface GLUT4myc and the surface gain of GLUT4myc in response to hypertonicity. The insulin effect was abolished by DN-NSF, but only partly reduced by TI-VAMP siRNA. We propose that insulin and hypertonicity recruit GLUT4myc from partly overlapping, but distinct sources defined by VAMP2 and TI-VAMP, respectively.  相似文献   

2.
Insulin regulates glucose transporter 4 (GLUT4) availability at the surface of muscle and adipose cells. In L6 myoblasts, stably expressed GLUT4myc is detected mostly in a perinuclear region. In unstimulated cells, about half of perinuclear GLUT4myc colocalizes with the transferrin receptor (TfR). Insulin stimulation selectively decreased the perinuclear colocalization of GLUT4myc with TfR determined by 3D-reconstruction of fluorescence images. Perinuclear GLUT4myc adopted two main distributions defined morphometrically as 'conical' and 'concentric'. Insulin rapidly reduced the proportion of cells with conical in favor of concentric perinuclear GLUT4myc distributions in association with the gain in surface GLUT4myc. Upon removal of insulin, the GLUT4myc perinuclear distribution and surface levels reversed in parallel. In contrast, hypertonicity (which like insulin elevates surface GLUT4myc) did not elicit perinuclear GLUT4myc redistribution. Insulin also caused redistribution of perinuclear vesicle-associated membrane protein-2 (VAMP2), without alteration of perinuclear TfR and VAMP3. Inhibitory mutants of phosphatidylinositol-3 kinase (Deltap85) or Akt substrate AS160 (AS160-4P) prevented insulin-mediated perinuclear GLUT4myc redistribution. Tetanus toxin expression did not prevent the perinuclear GLUT4myc redistribution, suggesting that redistribution is independent of GLUT4myc fusion with the plasma membrane. We propose that insulin causes selective, dynamic relocalization of perinuclear GLUT4myc and VAMP2 and perinuclear GLUT4myc redistribution is a direct target of insulin-derived signals.  相似文献   

3.
Insulin increases glucose uptake into muscle by enhancing the surface recycling of GLUT4 transporters. In myoblasts, insulin signals bifurcate downstream of phosphatidylinositol 3-kinase into separate Akt and Rac/actin arms. Akt-mediated Rab-GAP AS160 phosphorylation and Rac/actin are required for net insulin gain of GLUT4, but the specific steps (vesicle recruitment, docking or fusion) regulated by Rac, actin dynamics, and AS160 target Rab8A are unknown. In L6 myoblasts expressing GLUT4myc, blocking vesicle fusion by tetanus toxin cleavage of VAMP2 impeded GLUT4myc membrane insertion without diminishing its build-up at the cell periphery. Conversely, actin disruption by dominant negative Rac or Latrunculin B abolished insulin-induced surface and submembrane GLUT4myc accumulation. Expression of non-phosphorylatable AS160 (AS160-4P) abrogated membrane insertion of GLUT4myc and partially reduced its cortical build-up, an effect magnified by selective Rab8A knockdown. We propose that insulin-induced actin dynamics participates in GLUT4myc vesicle retention beneath the membrane, whereas AS160 phosphorylation is essential for GLUT4myc vesicle-membrane docking/fusion and also contributes to GLUT4myc cortical availability through Rab8A.  相似文献   

4.
Insulin enhances plasmalemmal-directed traffic of glucose transporter-4 (GLUT4), but it is unknown whether insulin regulates GLUT4 traffic through endosomal compartments. In L6 myoblasts expressing Myc-tagged GLUT4, insulin markedly stimulated the rate of GLUT4myc recycling. In myoblasts stimulated with insulin to maximize surface GLUT4myc levels, we followed the rates of surface-labeled GLUT4myc endocytosis and chased its intracellular distribution in space and time using confocal immunofluorescence microscopy. Surface-labeled GLUT4myc internalized rapidly (t(12) 3 min), reaching the early endosome by 2 min and the transferrin receptor-rich, perinuclear recycling endosome by 20 min. Upon re-addition of insulin, the t(12) of GLUT4 disappearance from the plasma membrane was unchanged (3 min), but strikingly, GLUT4myc reached the recycling endosome by 10 and left by 20 min. This effect of insulin was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002 or by transiently transfected dominant-negative phosphatidylinositol 3-kinase and protein kinase B mutants. In contrast, insulin did not alter the rate of arrival of rhodamine-labeled transferrin at the recycling endosome. These results reveal a heretofore unknown effect of insulin to accelerate inter-endosomal travel rates of GLUT4 and identify the recycling endosome as an obligatory stage in insulin-dependent GLUT4 recycling.  相似文献   

5.
Like neuronal synaptic vesicles, intracellular GLUT4-containing vesicles must dock and fuse with the plasma membrane, thereby facilitating insulin-regulated glucose uptake into muscle and fat cells. GLUT4 colocalizes in part with the vesicle SNAREs VAMP2 and VAMP3. In this study, we used a single-cell fluorescence-based assay to compare the functional involvement of VAMP2 and VAMP3 in GLUT4 translocation. Transient transfection of proteolytically active tetanus toxin light chain cleaved both VAMP2 and VAMP3 proteins in L6 myoblasts stably expressing exofacially myc-tagged GLUT4 protein and inhibited insulin-stimulated GLUT4 translocation. Tetanus toxin also caused accumulation of the remaining C-terminal VAMP2 and VAMP3 portions in Golgi elements. This behavior was exclusive to these proteins, because the localization of intracellular myc-tagged GLUT4 protein was not affected by the toxin. Upon cotransfection of tetanus toxin with individual vesicle SNARE constructs, only toxin-resistant VAMP2 rescued the inhibition of insulin-dependent GLUT4 translocation by tetanus toxin. Moreover, insulin caused a cortical actin filament reorganization in which GLUT4 and VAMP2, but not VAMP3, were clustered. We propose that VAMP2 is a resident protein of the insulin-sensitive GLUT4 compartment and that the integrity of this protein is required for GLUT4 vesicle incorporation into the cell surface in response to insulin.  相似文献   

6.
Contracting skeletal muscle increases glucose uptake to sustain energy demand. This is achieved through a gain in GLUT4 at the membrane, but the traffic mechanisms and regulatory signals involved are unknown. Muscle contraction is elicited by membrane depolarization followed by a rise in cytosolic Ca2+ and actomyosin activation, drawing on ATP stores. It is unknown whether one or more of these events triggers the rise in surface GLUT4. Here, we investigate the effect of membrane depolarization on GLUT4 cycling using GLUT4myc-expressing L6 myotubes devoid of sarcomeres and thus unable to contract. K+-induced membrane depolarization elevated surface GLUT4myc, and this effect was additive to that of insulin, was not prevented by inhibiting phosphatidylinositol 3-kinase (PI3K) or actin polymerization, and did not involve Akt activation. Instead, depolarization elevated cytosolic Ca2+, and the surface GLUT4myc elevation was prevented by dantrolene (an inhibitor of Ca2+ release from sarcoplasmic reticulum) and by extracellular Ca2+ chelation. Ca2+-calmodulin-dependent protein kinase-II (CaMKII) was not phosphorylated after 10 min of K+ depolarization, and the CaMK inhibitor KN62 did not prevent the gain in surface GLUT4myc. Interestingly, although 5'-AMP-activated protein kinase (AMPK) was phosphorylated upon depolarization, lowering AMPKalpha via siRNA did not alter the surface GLUT4myc gain. Conversely, the latter response was abolished by the PKC inhibitors bisindolylmaleimide I and calphostin C. Unlike insulin, K+ depolarization caused only a small increase in GLUT4myc exocytosis and a major reduction in its endocytosis. We propose that K+ depolarization reduces GLUT4 internalization through signals and mechanisms distinct from those engaged by insulin. Such a pathway(s) is largely independent of PI3K, Akt, AMPK, and CaMKII but may involve PKC.  相似文献   

7.
Insulin increases glucose uptake into muscle via glucose transporter-4 (GLUT4) translocation to the cell membrane, but the regulated events in GLUT4 traffic are unknown. Here we focus on the role of class IA phosphatidylinositol (PI) 3-kinase and specific phosphoinositides in the steps of GLUT4 arrival and fusion with the membrane, using L6 muscle cells expressing GLUT4myc. To this end, we detected the availability of the myc epitope at the cell surface or intravesicular spaces and of the cytosol-facing C-terminal epitope, in cells and membrane lawns derived from them. We observed the following: (a) Wortmannin and LY294002 at concentrations that inhibit class IA PI 3-kinase reduced but did not abate the C terminus gain, yet the myc epitope was unavailable for detection unless lawns or cells were permeabilized, suggesting the presence of GLUT4myc in docked, unfused vesicles. Accordingly, GLUT4myc-containing vesicles were detected by immunoelectron microscopy of membranes from cells pretreated with wortmannin and insulin, but not insulin or wortmannin alone. (b) Insulin caused greater immunological availability of the C terminus than myc epitopes, suggesting that C terminus unmasking had occurred. Delivering phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) to intact cells significantly increased lawn-associated myc signal without C terminus gain. Conversely, phosphatidylinositol 3-phosphate (PI3P) increased the detection of C terminus epitope without any myc gain. We propose that insulin regulates GLUT4 membrane arrival, fusion, and C terminus unmasking, through distinct phosphoinositides. PI(3,4,5)P(3) causes arrival and fusion without unmasking, whereas PI3P causes arrival and unmasking without fusion.  相似文献   

8.
Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin's effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100 nmol/L insulin and 10 μmol/L PI(3,4,5)P3 caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P3, increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P3 does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabeliing and possibly glucose uptake after treatment with PI(3,4,5)P3.  相似文献   

9.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis.  相似文献   

10.
The insulin-regulated glucose transporter (GLUT4) translocates to the plasma membrane in response to insulin in order to facilitate the postprandial uptake of glucose into fat and muscle cells. While early insulin receptor signaling steps leading to this translocation are well defined, the integration of signaling and regulation of GLUT4 traffic remains elusive. Several lines of evidence suggest an important role for the actin cytoskeleton and for protein-protein interactions in regulating GLUT4 localization by insulin. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) to identify proteins that interact with GLUT4 in an insulin-regulated manner. Myc-tagged GLUT4 (GLUT4myc) stably expressed in L6 myotubes was immunoprecipitated via the myc epitope from total membranes isolated from basal and insulin-stimulated cells grown in medium containing normal isotopic abundance leucine or deuterated leucine, respectively. Proteins coprecipitating with GLUT4myc were analyzed by liquid chromatography/ tandem mass spectrometry. Of 603 proteins quantified, 36 displayed an insulin-dependent change of their interaction with GLUT4myc of more than 1.5-fold in either direction. Several cytoskeleton-related proteins were elevated in immunoprecipates from insulin-treated cells, whereas components of the ubiquitin-proteasome degradation system were generally reduced. Proteins participating in vesicle traffic also displayed insulin-regulated association. Of cytoskeleton-related proteins, alpha-actinin-4 recovery in GLUT4 immunoprecipitates rose in response to insulin 2.1 +/- 0.5-fold by SILAC and 2.9 +/- 0.8-fold by immunoblotting. Insulin caused GLUT4 and alpha-actinin-4 co-localization as revealed by confocal immunofluorescence microscopy. We conclude that insulin elicits changes in interactions between diverse proteins and GLUT4, and that cytoskeletal proteins, notably alpha-actinin-4, associate with the transporter, potentially to facilitate its routing to the plasma membrane.  相似文献   

11.
Insulin maintains whole body blood glucose homeostasis, in part, by regulating the amount of the GLUT4 glucose transporter on the cell surface of fat and muscle cells. Insulin induces the redistribution of GLUT4 from intracellular compartments to the plasma membrane, by stimulating a large increase in exocytosis and a smaller inhibition of endocytosis. A considerable amount is known about the molecular events of insulin signaling and the complex itinerary of GLUT4 trafficking, but less is known about how insulin signaling is transmitted to GLUT4 trafficking. Here, we show that the AS160 RabGAP, a substrate of Akt, is required for insulin stimulation of GLUT4 exocytosis. A dominant-inhibitory mutant of AS160 blocks insulin stimulation of exocytosis at a step before the fusion of GLUT4-containing vesicles with the plasma membrane. This mutant, however, does not block insulin-induced inhibition of GLUT4 endocytosis. These data support a model in which insulin signaling to the exocytosis machinery (AS160 dependent) is distinct from its signaling to the internalization machinery (AS160 independent).  相似文献   

12.
In myocytes and adipocytes, insulin increases glucose transporter 4 (GLUT4) exocytosis by promoting GLUT4 vesicle docking/fusion with the membrane. Less is known about the mechanism and regulation of GLUT4 endocytosis, particularly in myocytes. Here, we show that GLUT4 internalization in L6 myoblasts was inhibited in part by hypertonicity or clathrin heavy chain knockdown and in part by cholesterol depletion. Both strategies had additive effects, abolishing GLUT4 endocytosis. GLUT4 internalization was abrogated by expressing dominant-negative dynamin-2 but unaffected by inhibiting caveolar-dependent endocytosis through syntaxin-6 knockdown or caveolin mutants (which reduced lactosylceramide endocytosis). Insulin did not affect GLUT4 internalization rate or sensitivity to clathrin or cholesterol depletion. In contrast, the mitochondrial uncoupler dinitrophenol (DNP), which like insulin increases surface GLUT4, reduced GLUT4 (but not transferrin) internalization, an effect additive to that of depleting clathrin but not cholesterol. Trout GLUT4 (a natural variant of GLUT4 bearing different endocytic motifs) exogenously expressed in mammalian L6 cells internalized only through the cholesterol-dependent route that also included the non-clathrin-dependent cargo interleukin-2 receptor β, and DNP reduced internalization of both proteins. These results suggest that in muscle cells, GLUT4 internalizes simultaneously through clathrin-mediated endocytosis and a caveolae-independent but cholesterol- and dynamin-dependent route. Manipulating GLUT4 endocytosis to maintain surface GLUT4 may bypass insulin resistance.  相似文献   

13.
Insulin treatment of fat cells results in the translocation of the insulin-responsive glucose transporter type 4, GLUT4, from intracellular compartments to the plasma membrane. However, the precise nature of these intracellular GLUT4-carrying compartments is debated. To resolve the nature of these compartments, we have performed an extensive morphological analysis of GLUT4-containing compartments, using a novel immunocytochemical technique enabling high labeling efficiency and 3-D resolution of cytoplasmic rims isolated from rat epididymal adipocytes. In basal cells, GLUT4 was localized to three morphologically distinct intracellular structures: small vesicles, tubules, and vacuoles. In response to insulin the increase of GLUT4 at the cell surface was compensated by a decrease in small vesicles, whereas the amount in tubules and vacuoles was unchanged. Under basal conditions, many small GLUT4 positive vesicles also contained IRAP (88%) and the v-SNARE, VAMP2 (57%) but not markers of sorting endosomes (EEA1), late endosomes, or lysosomes (lgp120). A largely distinct population of GLUT4 vesicles (56%) contained the cation-dependent mannose 6-phosphate receptor (CD-MPR), a marker protein that shuttles between endosomes and the trans-Golgi network (TGN). In response to insulin, GLUT4 was recruited both from VAMP2 and CD-MPR positive vesicles. However, while the concentration of GLUT4 in the remaining VAMP2-positive vesicles was unchanged, the concentration of GLUT4 in CD-MPR-positive vesicles decreased. Taken together, we provide morphological evidence indicating that, in response to insulin, GLUT4 is recruited to the plasma membrane by fusion of preexisting VAMP2-carrying vesicles as well as by sorting from the dynamic endosomal-TGN system.  相似文献   

14.
Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes. Here, we investigated whether overexpression of VAMP2 and/or VAMP3 could protect insulin-stimulated GLUT4 translocation under conditions of insulin resistance. HL-1 atrial cardiomyocytes transiently overexpressing either VAMP2 or VAMP3 were cultured for 16 h with elevated concentrations of palmitate and insulin. Upon subsequent acute stimulation with insulin, we measured GLUT4 translocation, plasmalemmal presence of the fatty acid transporter CD36, and myocellular lipid accumulation. Overexpression of VAMP3, but not VAMP2, completely prevented lipid-induced inhibition of insulin-stimulated GLUT4 translocation. Furthermore, the plasmalemmal presence of CD36 and intracellular lipid levels remained normal in cells overexpressing VAMP3. However, insulin signaling was not retained, indicating an effect of VAMP3 overexpression downstream of PKB/Akt. Furthermore, we revealed that endogenous VAMP3 is bound by the contraction-activated protein kinase D (PKD), and contraction and VAMP3 overexpression protect insulin-stimulated GLUT4 translocation via a common mechanism. These observations indicate that PKD activates GLUT4 translocation via a VAMP3-dependent trafficking step, which pathway might be valuable to rescue constrained glucose utilization in the insulin-resistant heart.  相似文献   

15.
Adipose tissue hypoxia is an early phenotype in obesity, associated with macrophage infiltration and local inflammation. Here we test the hypothesis that adipocytes in culture respond to a hypoxic environment with the release of pro-inflammatory factors that stimulate macrophage migration and cause muscle insulin resistance. 3T3-L1 adipocytes cultured in a 1% O2 atmosphere responded with a classic hypoxia response by elevating protein expression of HIF-1α. This was associated with elevated mRNA expression and peptide release of cytokines TNFα, IL-6 and the chemokine monocyte chemoattractant protein-1 (MCP-1). The mRNA and protein expression of the anti-inflammatory adipokine adiponectin was reduced. Conditioned medium from hypoxia-treated adipocytes (CM-H), inhibited insulin-stimulated and raised basal cell surface levels of GLUT4myc stably expressed in C2C12 myotubes. Insulin stimulation of Akt and AS160 phosphorylation, key regulators of GLUT4myc exocytosis, was markedly impaired. CM-H also caused activation of JNK and S6K, and elevated serine phosphorylation of IRS1 in the C2C12 myotubes. These effects were implicated in reducing propagation of insulin signaling to Akt and AS160. Heat inactivation of CM-H reversed its dual effects on GLUT4myc traffic in muscle cells. Interestingly, antibody-mediated neutralization of IL-6 in CM-H lowered its effect on both the basal and insulin-stimulated cell surface GLUT4myc compared to unmodified CM-H. IL-6 may have regulated GLUT4myc traffic through its action on AMPK. Additionally, antibody-mediated neutralization of MCP-1 partly reversed the inhibition of insulin-stimulated GLUT4myc exocytosis caused by unmodified CM-H. In Transwell co-culture, hypoxia-challenged adipocytes attracted RAW 264.7 macrophages, consistent with elevated release of MCP-1 from adipocytes during hypoxia. Neutralization of MCP-1 in adipocyte CM-H prevented macrophage migration towards it and partly reversed the effect of CM-H on insulin response in muscle cells. We conclude that adipose tissue hypoxia may be an important trigger of its inflammatory response observed in obesity, and the elevated chemokine MCP-1 may contribute to increased macrophage migration towards adipose tissue and subsequent decreased insulin responsiveness of glucose uptake in muscle.  相似文献   

16.
Insulin stimulates glucose uptake into muscle and fat cells by translocating glucose transporter 4 (GLUT4) to the cell surface, with input from phosphatidylinositol (PI) 3-kinase and its downstream effector Akt/protein kinase B. Whether PI 3,4,5-trisphosphate (PI(3,4,5)P(3)) suffices to produce GLUT4 translocation is unknown. We used two strategies to deliver PI(3,4,5)P(3) intracellularly and two insulin-sensitive cell lines to examine Akt activation and GLUT4 translocation. In 3T3-L1 adipocytes, the acetoxymethyl ester of PI(3,4,5)P(3) caused GLUT4 migration to the cell periphery and increased the amount of plasma membrane-associated phospho-Akt and GLUT4. Intracellular delivery of PI(3,4,5)P(3) using polyamine carriers also induced translocation of myc-tagged GLUT4 to the surface of intact L6 myoblasts, demonstrating membrane insertion of the transporter. GLUT4 translocation caused by carrier-delivered PI(3,4,5)P(3) was not reproduced by carrier-PI 4,5-bisphosphate or carrier alone. Like insulin, carrier-mediated delivery of PI(3,4,5)P(3) elicited redistribution of perinuclear GLUT4 and Akt phosphorylation at the cell periphery. In contrast to its effect on GLUT4 mobilization, delivered PI(3,4,5)P(3) did not increase 2-deoxyglucose uptake in either L6GLUT4myc myoblasts or 3T3-L1 adipocytes. The ability of exogenously delivered PI(3,4,5)P(3) to augment plasma membrane GLUT4 content without increasing glucose uptake suggests that input at the level of PI 3-kinase suffices for GLUT4 translocation but is insufficient to stimulate glucose transport.  相似文献   

17.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

18.
L6 myoblasts stably transfected with a GLUT4 cDNA harboring an exofacial myc epitope tag (L6-GLUT4myc myoblasts) were used to study the role of protein kinase B alpha (PKBalpha)/Akt1 in the insulin-induced translocation of GLUT4 to the cell surface. Surface GLUT4myc was detected by immunofluorescent labeling of the myc epitope in nonpermeabilized cells. Insulin induced a marked translocation of GLUT4myc to the plasma membrane within 20 min. This was prevented by transient transfection of a dominant inhibitory construct of phosphatidylinositol (PI) 3-kinase (Deltap85alpha). Transiently transfected cells were identified by cotransfection of green fluorescent protein. A constitutively active PKBalpha, created by fusion of a viral Gag protein at its N terminus (GagPKB), increased the cell surface density of GLUT4myc compared to that of neighboring nontransfected cells. A kinase-inactive, phosphorylation-deficient PKBalpha/Akt1 construct with the mutations K179A (substitution of alanine for the lysine at position 179), T308A, and S473A (AAA-PKB) behaved as a dominant-negative inhibitor of insulin-dependent activation of cotransfected wild-type hemagglutinin (HA)-tagged PKB. Furthermore, AAA-PKB markedly inhibited the insulin-induced phosphorylation of cotransfected BAD, demonstrating inhibition of the endogenous PKB/Akt. Under the same conditions, AAA-PKB almost entirely blocked the insulin-dependent increase in surface GLUT4myc. PKBalpha with alanine substitutions T308A and S473A (AA-PKB) or K179A (A-PKB) alone was a less potent inhibitor of insulin-dependent activation of wild-type HA-PKB or GLUT4myc translocation than was AAA-PKB. Cotransfection of AAA-PKB with a fourfold DNA excess of HA-PKB rescued insulin-stimulated GLUT4myc translocation. AAA-PKB did not prevent actin bundling (membrane ruffling), though this response was PI 3-kinase dependent. Therefore, it is unlikely that AAA-PKB acted by inhibiting PI 3-kinase signaling. These results outline an important role for PKBalpha/Akt1 in the stimulation of glucose transport by insulin in muscle cells in culture.  相似文献   

19.
To investigate the physiological function of the VAMP3 vesicle SNARE (v-SNARE) isoform in the regulation of GLUT4 vesicle trafficking, we generated homozygotic VAMP3 null mice by targeted gene disruption. The VAMP3 null mice had typical growth rate and weight gain, with normal maintenance of fasting serum glucose and insulin levels. Analysis of glucose disposal and insulin sensitivity demonstrated normal insulin and glucose tolerance, with no evidence for insulin resistance. Insulin stimulation of glucose uptake in isolated primary adipocytes was essentially the same for the wild-type and VAMP3 null mice. Similarly, insulin-, hypoxia-, and exercise-stimulated glucose uptake in isolated skeletal muscle did not differ significantly. In addition, other general membrane trafficking events including phagocytosis, pinocytosis, and transferrin receptor recycling were also found to be unaffected in the VAMP3 null mice. Taken together, these data demonstrate that VAMP3 function is not necessary for either regulated GLUT4 translocation or general constitutive membrane recycling.  相似文献   

20.
Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen 1 protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of the trans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号