首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability of thylakoid components under supra-high irradiancewas studied with the cyanophyte Synechocystis PCC 6714. Theactivity of overall photosynthesis was quickly inactivated (T1/2=20min) under supra-high irradiance (300 W m–2, white light).In parallel with the inactivation of photosynthesis, QA in PSII was also inactivated. Both inactivations were acceleratedby chloramphenicol (CAP) addition. The reactivation of PS IIrequired weak irradiation and was suppressed by CAP. However,PS I measured as P700 was very stable. The level of PS I measuredas P700 was not significantly reduced by the irradiation for12 h even in the presence of CAP while the level of Cyt b559,component of PS II, was decreased markedly. The function ofPS I before and after supra-high irradiation with CAP was examinedby comparing sizes of P700 oxidation induced by a short flash,by a continuous light, and by determination of O2-and ferredoxin-reduction.No difference was observed in PS I actions before and afterthe irradiation treatment. These results indicate that the PSI complex is very tolerant of supra-high irradiation. However,the cells grown under supra-high irradiance contained much fewerPS I and PS II complexes than Cyt b6–f complexes. Theformer levels were reduced to a half to one fourth of thosebefore growth while the level of Cyt b6–f complex wasnot reduced so much. A possible mechanism for changes in thylakoidcomposition under supra-high irradiation was discussed. (Received February 16, 1991; Accepted June 12, 1991)  相似文献   

2.
A DCMU* (diuron)-resistant algal mutant was selected and characterized. Chlorophyll content, growth, and photosystem-I activity are as in the wild-type. Growth in liquid medium with 3 M DCMU present is half of the control. Apparently only the herbicide-binding site is affected within the redox chain. In contrast to the wild-type, trypsin treatment of isolated chloroplast material completely abolishes photosynthetic electron transport inhibition by DCMU or atrazine.DCMU resistance of chloroplasts is accompanies by tolerance to triazinones and phenylpyridazinones, but not to symmetric triazines. Sensitivity to diphenylethers, DBMIB or o-phenanthroline is not altered.Data on this algal mutant combined with those from triazine-resistant mutants of higher plants give direct evidence of overlapping binding sites at a (hypothetical) binding protein located at the reducing side of photosytem II.  相似文献   

3.
The effects of DCMU and NaN3 were studied on menadione-mediated photophosphorylation in broken spinach chloroplasts kept in low oxygen tension in Tricine or HEPES buffers at either high or reduced irradiances. – (A) At high irradiance (131 W. m?2) and absence of NaN3 the ATP formation was inhibited by DCMU regardless of the type of buffer used. – (B) At high irradiance and presence of NaN3 some concentrations of DCMU stimulated, whilst others inhibited the ATP formation in a HEPES buffer. The ATP formation was predominantly inhibited by DCMU in a Tricine buffer. – (C) At reduced irradiance (57 W. m?2) the chloroplasts in a HEPES buffer were almost insensitive towards DCMU both in the presence and absence of NaN3. – (D) Chloroplasts in a Tricine buffer were slightly stimulated in their ATP formation by DCMU at reduced irradiance either with or without the presence of NaN3 in the experimental medium. When menadione acts as a terminal electron acceptor, oxygen is consumed on its reoxidation. The results indicate that this process may occur with oxygen released by the splitting of water as the main oxidant. – The data also demonstrate the importance of caution when selecting buffering substances as well as when choosing light intensities for experiments on photophosphorylation in chloroplasts.  相似文献   

4.
The acclimation of the photosynthetic apparatus to growth irradiance in a mutant strain of Synechococcus sp. PCC 7942 lacking detectable iron superoxide dismutase activity was studied. The growth of the mutant was inhibited at concentrations of methyl viologen 4 orders of magnitude smaller than those required to inhibit the growth of the wild-type strain. An increased sensitivity of photosynthetic electron transport near photosystem I (PSI) toward photooxidative stress was also observed in the mutant strain. In the absence of methyl viologen, the mutant exhibited similar growth rates compared with those of the wild type, even at high growth irradiance (350 [mu]E m-2 s-1) where chronic inhibition of photosystem II (PSII) was observed in both strains. Under high growth irradiance, the ratios of PSII to PSI and of [alpha]-phycocyanin to chlorophyll a were less than one-third of the values for the wild type. In both strains, cellular contents of chlorophyll a, [alpha]-phycocyanin, and [beta]-carotene, as well as the length of the phycobilisome rods, declined with increasing growth irradiance. Only the cellular content of the carotenoid zeaxanthin seemed to be independent of growth irradiance. These results suggest an altered acclimation to growth irradiance in the sodB mutant in which the stoichiometry between PSI and PSII is adjusted to compensate for the loss of PSI efficiency occurring under high growth irradiance. Similar shortening of the phycobilisome rods in the sodB mutant and wild-type strain suggest that phycobilisome rod length is regulated independently of photosystem stoichiometry.  相似文献   

5.
State transitions were investigated in the cyanobacterium Synechococcus sp. PCC 7002 in both wild-type cells and mutant cells lacking phycobilisomes. Preillumination in the presence of DCMU induced State 1 and dark-adaptation induced State 2 in both wild-type and mutant cells as determined by 77 K fluorescence emission spectroscopy. Light-induced transitions were observed in the wild-type after preferential excitation of phycocyanin (State 2) or preferential excitation of Chl a (State 1). Light-induced transitions were also observed in the phycobilisome-less mutant after preferential excitation of short-wavelength Chl a (State 2) or carotenoids and long-wavelength Chl a (State 1). We conclude that the mechanism of the light-state transition in cyanobacteria does not require the presence of the phycobilisome. Our results contradict proposed models for the state transition, which require phosphorylation of, and an active role for, the phycobilisome.  相似文献   

6.
A novel two-stage experimental photobioreactor (PBR) with a total volume of 450 L and based uniquely on solar concentrators—linear Fresnel lenses—has been constructed and tested. Daily courses of irradiance, and also its distribution inside cultivation tubes, were studied in two unit types. The supra-high irradiance units in the ‘roof’ achieved a maximum summer value above 6 mmol photon m−2 s−1, while irradiance in the vertical-facade units was lower than ‘ambient’. In model cultivations, cultures of the cyanobacterium Arthrospira platensis were cultivated at much higher solar irradiances than those usually recorded outdoors in summer, indicating that this organism is resilient to high-irradiance (photoinhibition). Starting from a biomass density of 0.5 g L−1 at optimum temperature, the cultures grew exponentially. A two-stage cultivation process of the green microalga Haematococcus pluvialis was investigated with respect to correlations between photochemical activities and astaxanthin production. The culture was first grown in low-irradiance units, and then exposed to supra-high irradiance when the rate of astaxanthin production was 30–50% higher than in the culture exposed to ‘ambient’ irradiance. Within 4 days, the astaxanthin content reached 3% of dry weight, whereas under ambient irradiance the astaxanthin content was 25% lower.  相似文献   

7.
8.
Electron transfer rates to P700+ have been determined in wild-type and three interposon mutants (psaE-, ndhF-, and psaE- ndhF-) of Synechococcus sp. PCC 7002. All three mutants grew significantly more slowly than wild type at low light intensities, and each failed to grow photoheterotrophically in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a metabolizable carbon source. The kinetics of P700+ reduction were similar in the wild-type and mutant whole cells in the absence of DCMU. In the presence of DCMU, the P700+ reduction rate in the psaE mutant was significantly slower than in the wild type. In the presence of DCMU and potassium cyanide, added to inhibit the outflow of electrons through cytochrome oxidase, P700+ reduction rates increased for both the psaE- and ndhF- strains. The reduction rates for these two mutants were nonetheless slower than that observed for the wild-type strain. The further addition of methyl viologen caused the rate of P700+ reduction in the wild type to become as slow as that for the psaE mutant in the absence of methyl viologen. Given the ability of methyl viologen to intercept electrons from the acceptor side of photosystem I, this response reveals a lesion in cyclic electron flow in the psaE mutant. In the presence of DCMU, the rate of P700+ reduction in the psaE ndhF double mutant was very slow and nearly identical with that for the wild-type strain in the presence of 2,4-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a condition under which physiological electron donation to P700+ should be completely inhibited. These results suggest that NdhF- and PsaE-dependent electron donation to P700+ occurs only via plastoquinone and/or cytochrome b6/f and indicate that there are three major electron sources for P700+ reduction in this cyanobacterium. We conclude that, although PsaE is not required for linear electron flow to NADP+, it is an essential component in the cyclic electron transport pathway around photosystem I.  相似文献   

9.
Results show that an isolated mutant of the cyanobacterium Anabaena doliolum is a fast-growing strain. It exhibits approximately twofold higher NaCl tolerance than the wild type. It also reveals cross-resistance against the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), drug bacitracin, and LiCl. Further, an improved LiCl tolerance property of both the mutant and wild-type strains at high concentration of NaCl (40 mM) may be interpreted in terms of competitive inhibition of the Li+ uptake by Na+ ions, whereas bacitracin resistance in these organisms is described to be the result of an alteration in the drug transporting channels of membrane. The multiple stress tolerance property of the A. doliolum may be attributed to altered membrane characteristics in the mutant strain, leading to reduced intake of such toxicants. Received: 6 November 2001 / Accepted: 14 December 2001  相似文献   

10.
The specific binding of DCMU and atrazine to the thylakoid membranes of a uniparentally inherited DCMU-resistant mutant dr-416 of Chlamydomonas reinhardii was measured. Whole cells of the mutant can tolerate a 15-fold concentration of DCMU as compared to the parent strain. The same tolerance is found for the photosystem II activity of isolated thylakoid membranes. The mutant is not resistant against atrazine. In equilibrium-binding studies with [14C]atrazine and unlabelled DCMU, the specific binding for atrazine was found to be identical in the mutant and in the parent strain. The competitive binding of DCMU is significantly weaker for membranes of the mutant than of the parent strain, the equilibrium dissociation constants being 2.0 × 10?7 M and 3.8 × 10?8 M, respectively.  相似文献   

11.
Long-day flowering of wild-type Lemna perpusilla (strain 6746)on ammonium-free medium with sucrose occurred in continuouslight of low intensity (25 ft-c). In higher intensities of light,frond production was increased and flowering was reduced. Thephotosynthetic inhibitor DCMU inhibited frond production andpromoted flowering in the presence or absence of exogenous sucrose.In the photosynthetic mutant strain 1073, the higher intensitiesof light inhibited frond production, but did not reduce flowering.DCMU increased mutant frond production, thus leading to increasedflowering percents. The mechanism by which DCMU affects floweringand growth appears to differ from that of other flower-promotingsupplements reported by Takimoto and Tanaka. The results suggestthat inhibition of photosynthesis enhances flowering in longdays. (Received June 25, 1977; )  相似文献   

12.
吴深基  赵璐 《动物学杂志》2021,56(5):746-755
黑素皮质素1受体基因(mc1r)是控制动物色素合成的重要基因,为探讨mc1r基因与虹鳟(Oncorhynchus mykiss)体色变异的关系,本研究利用cDNA末端快速扩增(RACE)技术获得虹鳟mc1r基因的cDNA全长序列,并对其编码的蛋白进行了生物信息学分析,同时利用实时荧光定量PCR(qRT-PCR)分析该基因在野生型虹鳟(虹鳟)和黄色突变型虹鳟(金鳟)体色发生不同时期(从受精期至12月龄)及成鱼背部皮肤、腹部皮肤、背部肌肉、腹部肌肉、眼、脑、鳃、中肾、头肾、肠、肝、脾和心13种组织中的表达差异。结果显示,mc1r基因序列全长为4 518 bp,开放阅读框1 017 bp,编码338个氨基酸。氨基酸序列分析发现,虹鳟Mc1r蛋白具有7TM_GPCR_Srsx结构域。通过氨基酸序列同源比对与系统进化分析表明,Mc1r蛋白序列在鱼类间具有较高的保守性。qRT-PCR结果表明,mc1r基因在虹鳟与金鳟的受精期就开始表达,且在受精期至桑葚期胚胎的表达量高于胚胎后期;mc1r基因在虹鳟与金鳟相同时期表达比较结果显示,该基因在受精期、4细胞期、16细胞期、囊胚期、原肠期、神经期、体节期、1日龄、3日龄、7日龄胚胎或个体以及1月龄、2月龄、3月龄和6月龄背部皮肤中的表达均差异显著(P 0.05);mc1r基因在12月龄虹鳟和金鳟的13种组织中均有表达,其中,该基因在虹鳟与金鳟的背部皮肤、腹部皮肤和脑中的表达量较高,显著高于其他组织(P 0.05),且虹鳟背部皮肤中该基因的表达量高于金鳟背部皮肤(P 0.05)。以上结果表明,mc1r基因可能与虹鳟体色变异密切相关。本研究可为后期进一步深入阐明虹鳟体色变异的分子机制提供基础资料。  相似文献   

13.
Abstract

Novel compound heterozygous mutations, G701D, a recessive mutation, and A858D, a mild dominant mutation, of human solute carrier family 4, anion exchanger, member 1 (SLC4A1) were identified in two pediatric patients with distal renal tubular acidosis (dRTA). To examine the interaction, trafficking, and cellular localization of the wild-type and two mutant kidney AE1 (kAE1) proteins, we expressed the proteins alone or together in human embryonic kidney (HEK) 293T and Madin-Darby canine kidney (MDCK) epithelial cells. In individual expressions, wild-type kAE1 was localized at the cell surface of HEK 293T and the basolateral membrane of MDCK cells. In contrast, kAE1 G701D was mainly retained intracellularly, while kAE1 A858D was observed intracellularly and at the cell surface. In co-expression experiments, wild-type kAE1 formed heterodimers with kAE1 G701D and kAE1 A858D, and promoted the cell surface expression of the mutant proteins. The co-expressed kAE1 G701D and A858D could also form heterodimers but showed predominant intracellular retention in HEK 293T and MDCK cells. Thus impaired trafficking of the kAE1 G701D and A858D mutants would lead to a profound decrease in functional kAE1 at the basolateral membrane of α-intercalated cells in the distal nephron of the patients with dRTA.  相似文献   

14.
Photosynthetic acclimation to temperature and irradiance was studied in the filamentous, non-heterocystous cyanobacterium Plectonema boryanum UTEX 485. Growth rates of this cyanobacterium measured at ambient CO2 were primarily influenced by temperature with minimal effects of irradiance. Both growth temperature and irradiance affected linolenic (18:3) and linoleic acid (18:2) levels in the four major lipid classes in an independent but additive manner. In contrast, photosynthetic acclimation was not due to either growth temperature or irradiance per se, but rather, due to the interaction of these environmental factors. P. boryanum grown at low temperature and moderate irradiance mimicked cells grown at high light. Compared to cells grown at either 29 degrees C/150 micromol m(-2) s(-1) (29/150) or 15/10, P. boryanum grown at either 15/150 or 29/750 exhibited: (1) reduced cellular levels of Chl a and phycobilisomes (PBS), and concomitantly higher content of an orange-red carotenoid, myxoxanthophyll; (2) higher light saturated rates (Pmax) when expressed on a Chl a basis but lower apparent quantum yields of oxygen evolution and (3) enhanced resistance to high light stress. P. boryanum grown at 15/150 regained normal blue-green pigmentation within 16 h after a temperature shift to 29 degrees C at a constant irradiance of 150 micromol m(-2) s(-1). DBMIB and KCN but not DCMU and atrazine partially inhibited the change in myxoxanthophyll/Chl a ratio following the shift from 15 to 29 degrees C. We conclude that P. boryanum responds to either varying growth temperature or varying growth irradiance by adjusting the ability to absorb light through decreasing the cellular contents of Chl a and light-harvesting pigments and screening of excessive light by myxoxanthophyll predominantly localized in the cell wall/cell membrane to protect PSII from over-excitation. The possible role of redox sensing/signalling for photosynthetic acclimation of cyanobacteria to either temperature or irradiance is discussed.  相似文献   

15.
Ethylene-insensitive3(EIN3)和 EIN3-like1(EIL1)蛋白是乙烯信号转导途径中一类重要的核转录因子。花青素是植物体中的一类水溶性天然色素,在植物的许多生理过程中起重要作用。本研究以拟南芥双突变体ein3-1eil1-3为研究材料,通过RT-PCR技术确定了拟南芥双突变体ein3-1eil1-3中EIN3和EIL1基因均已被敲除,单突变体ein3-1中的EIN3基因被敲除。通过肉眼定性观察发现突变体ein3-1eil1-3的种子和叶片内均呈紫色。通过紫外分光光度计定量分析发现,花青素积累量也明显比突变体ein3-1和野生型多。通过GUS染色发现EIN3启动子主要在花、柱头、成熟花粉、种子胚和果荚等组织中有较强的表达。这与突变体ein3-1eil1-3的种子和叶片内均呈紫色并花青素含量增高一致。因此,拟南芥转录因子EIN3可能与EIL1共同参与抑制花青素的合成。  相似文献   

16.
Two herbicide-resistant mutants of the unicellular cyanobacterium, Anacystis nidulans R2, were obtained by mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. These mutants, A. nidulans R2D1 and R2D2, were selected by growth of mutagenized cells in the presence of 10?6 M and 10?5 M 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), respectively. Both were found to be cross-resistant to 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) and 2-n-heptyl-4-hydroxyquinoline-n-oxide (HQNO) by measurement of Photosystem II activity in the presence of the inhibitors. The DCMU-resistance trait from each mutant was transferred to a wild-type genetic background by DNA-mediated transformation of A. nidulans cells. The two resulting transformants, A. nidulans R2D1-X1 and R2D2-X1, were similar to the original mutants with respect to DCMU- and HQNO-resistance. However, both exhibited increased sensitivity to atrazine relative to the mutants from which they were derived. Polyacrylamide gel electrophoretic analysis revealed that the mutants and transformants were deficient in a 34 kDa, surface-exposed polypeptide which was present in the wild-type strain; the transformants exhibited a new polypeptide of 35.5 kDa which was also highly surface-exposed.  相似文献   

17.
J P Davies  F H Yildiz    A Grossman 《The EMBO journal》1996,15(9):2150-2159
The sac1 mutant of Chlamydomonas reinhardtii is aberrant in most of the normal responses to sulfur limitation; it cannot synthesize arylsulfatase, does not take up sulfate as rapidly as wild-type cells, and does not synthesize periplasmic proteins that normally accumulate during sulfur-limited growth. Here, we show that the sac1 mutant dies much more rapidly than wild-type cells during sulfur deprivation; this emphasizes the vital role of the acclimation process. The loss of viability of the sac1 mutant during sulfur deprivation is only observed in the light and is mostly inhibited by DCMU. During sulfur-stress, wild-type cells, but not the sac1 mutant, downregulate photosynthesis. Thus, death of the sac1 mutant during sulfur deprivation is probably a consequence of its inability to downregulate photosynthesis. Furthermore, since SAC1 is necessary for the downregulation of photosynthesis, the process must be highly controlled and not simply the result of a general decrease in protein synthesis due to sulfur limitation. Genomic and cDNA copies of the SAC1 gene have been cloned. The deduced amino acid sequence of Sac1 is similar to an Escherichia coli gene that may involved in the response of E.coli to nutrient deprivation.  相似文献   

18.
Hypophosphatasia (HOPS) is a clinically heterogeneous heritable disorder characterized by defective skeletal mineralization, deficiency of tissue-nonspecific alkaline phosphatase (TNSALP) activity, and premature loss of deciduous teeth. To date, various mutations in the TNSALP gene have been identified. Especially, A115V located in exon 5 has been detected in a Japanese patient with severe periodontitis and adult-type HOPS. In this study, we have characterized the protein translated from the mutant A115V gene. Wild-type and A115V mutant-type TNSALP cDNA expression vector pcDNA3 have been constructed and transfected to COS-1 cells by lipofectin technique. After 48-h transfection, the cells were subjected to assay ALP activity. In order to identify possible dominant effect of the mutation, we performed co-transfections of wild-type and mutated cDNA, and evaluated the residual activities of each mutation. Detection of TNSALP synthesized by COS-1 cells transfected with the wild- or the mutated-type was also performed by using an immunofluorescent method. ALP activity of cell transfected with the mutant cDNA (A115V) plasmid after 48-h transfection exhibited 0.399+/-0.021 U/mg. As the enzymatic activity of the wild type was taken as 100%, the value of the mutant was estimated as 16.9%. When co-transfected this mutant showed no inhibition of the wild-type enzyme. TNSALP in COS-1 cells with transfected with the mutant exhibited strong fluorescence at the surface of cells as wild-type. This study indicated that the mutant (A115V) TNSALP gene produced the defective ALP enzyme and it could be recessively transmitted and be a disease-causing mutation of the adult-type hypophosphatasia.  相似文献   

19.
20.
A light-sensitive and chlorophyll (Chl)-deficient mutant of the green alga Dunaliella salina (dcd1) showed an amplified response to irradiance stress compared to the wild-type. The mutant was yellow-green under low light (100 micromol photons m(-2) s(-1)) and yellow under high irradiance (2000 micromol photons m(-2) s(-1)). The mutant had lower levels of Chl, lower levels of light harvesting complex II, and a smaller Chl antenna size. The mutant contained proportionately greater amounts of photodamaged photosystem (PS) II reaction centers in its thylakoid membranes, suggesting a greater susceptibility to photoinhibition. This phenotype was more pronounced under high than low irradiance. The Cbr protein, known to accumulate when D. salina is exposed to irradiance stress, was pronouncedly expressed in the mutant even under low irradiance. This positively correlated with a higher zeaxanthin content in the mutant. Cbr protein accumulation, xanthophyll cycle de-epoxidation state, and fraction of photodamaged PSII reaction centers in the thylakoid membrane showed a linear dependence on the chloroplast 'photoinhibition index', suggesting a cause-and-effect relationship between photoinhibition, Cbr protein accumulation and xanthophyll cycle de-epoxidation state. These results raised the possibility of zeaxanthin and Cbr involvement in the PSII repair process through photoprotection of the partially disassembled, and presumably vulnerable, PSII core complexes from potentially irreversible photooxidative bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号