首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4(+) T cell depletion, as CD4(+) T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression.  相似文献   

2.
Pathogenic HIV infections of humans and simian immunodeficiency virus (SIV) infections of rhesus macaques are characterized by generalized immune activation and progressive CD4(+) T cell depletion. In contrast, natural reservoir hosts for SIV, such as sooty mangabeys, do not progress to AIDS and show a lack of aberrant immune activation and preserved CD4(+) T cell populations, despite high levels of SIV replication. Here we show that sooty mangabeys have substantially reduced levels of innate immune system activation in vivo during acute and chronic SIV infection and that sooty mangabey plasmacytoid dendritic cells (pDCs) produce markedly less interferon-alpha in response to SIV and other Toll-like receptor 7 and 9 ligands ex vivo. We propose that chronic stimulation of pDCs by SIV and HIV in non-natural hosts may drive the unrelenting immune system activation and dysfunction underlying AIDS progression. Such a vicious cycle of continuous virus replication and immunopathology is absent in natural sooty mangabey hosts.  相似文献   

3.
Pathogenic human immunodeficiency virus (HIV)/Simian immunodeficiency virus (SIV) infection is associated with increased T-cell apoptosis. In marked contrast to HIV infection in humans and SIV infection in macaques, the SIV infection of natural host species is typically nonpathogenic despite high levels of viral replication. In these nonpathogenic primate models, no observation of T-cell apoptosis was observed, suggesting that either SIV is less capable of directly inducing apoptosis in natural hosts (likely as a result of coevolution/coadaptation with the host) or, alternatively, that the indirect T-cell apoptosis plays the key role in determining the HIV-associated T-cell depletion and progression to acquired immune deficiency syndrome (AIDS). Understanding the molecular and cellular mechanisms responsible for the disease-free equilibrium in natural hosts for SIV infection, including those determining the absence of high levels of T-cell apoptosis, is likely to provide important clues regarding the mechanisms of AIDS pathogenesis in humans.  相似文献   

4.
To understand how natural sooty mangabey hosts avoid AIDS despite high levels of simian immunodeficiency virus (SIV) SIVsm replication, we inoculated mangabeys and nonnatural rhesus macaque hosts with an identical inoculum of uncloned SIVsm. The unpassaged virus established infection with high-level viral replication in both macaques and mangabeys. A species-specific, divergent immune response to SIV was evident from the first days of infection and maintained in the chronic phase, with macaques showing immediate and persistent T-cell proliferation, whereas mangabeys displayed little T-cell proliferation, suggesting subdued cellular immune responses to SIV. Importantly, only macaques developed (CD4+)-T-cell depletion and AIDS, thus indicating that in mangabeys limited immune activation is a key mechanism to avoid immunodeficiency despite high levels of SIVsm replication. These studies demonstrate that it is the host response to infection, rather than properties inherent to the virus itself, that causes immunodeficiency in SIV-infected nonhuman primates.  相似文献   

5.
Animal models of AIDS   总被引:21,自引:0,他引:21  
M B Gardner  P A Luciw 《FASEB journal》1989,3(14):2593-2606
Animal models of AIDS are essential for understanding the pathogenesis of retrovirus-induced immune deficiency and encephalopathy and for development and testing of new therapies and vaccines. AIDS and related disorders are etiologically linked to members of the lentivirus subfamily of retroviruses; these lymphocytopathic lentiviruses are designated human immuno-deficiency virus type 1 (HIV-1) and human immuno-deficiency virus type 2 (HIV-2). The only animals susceptible to experimental HIV-1 infection are the chimpanzee, gibbon ape, and rabbit but AIDS-like disease has not yet been reported in these species. Macaques can be persistently infected with some strains of HIV-2 but no AIDS-like disease has resulted. It is not yet clear how suitable HIV-infected SCID-hu mice will be as a model for AIDS. Several subfamilies of naturally occurring cytopathic retroviruses cause immune suppression, including fatal immunodeficiency syndromes in chickens, mice, cats, and monkeys. Domestic cats suffer immunosuppression from both an onco-virus, feline leukemia virus, and a member of the lentivirus subfamily, feline immunodeficiency virus (FIV). Asian macaques are susceptible to fatal simian AIDS from a type D retrovirus, indigenous in macaques, and from a lentivirus, simian immunodeficiency virus (SIV), which is indigenous to healthy African monkeys. SIV is the animal lentivirus most closely related to HIV. Of these animal models, the lentivirus infections of cats (FIV) and macaques (SIV) appear to bear the closest similarity in their pathogenesis to HIV infection and AIDS. This review will summarize these various animal model systems for AIDS and illustrate their usefulness for antiviral therapy and vaccinology.  相似文献   

6.
HIV/AIDS: in search of an animal model   总被引:4,自引:0,他引:4  
AIDS is among the most devastating diseases of our time, claiming the lives of approximately 3 million people per year. The primary cause of AIDS, human immunodeficiency virus type 1 (HIV-1), is a pathogen that is highly specific for humans and generally does not infect or cause disease in other species. This property complicates the generation of animal models that are urgently needed to test new antiretroviral therapies and vaccines. The most practical animal models developed to date consist of infection of rhesus macaques with a simian immunodeficiency virus (SIV) or chimeric HIV/SIV viruses. Although these models are useful for particular applications, the fact that SIV is a distinct virus compared with HIV-1 represents a significant limitation to their use. Here, we discuss the uses and limitations of existing models and recent advances that might lead to better animal models for HIV/AIDS.  相似文献   

7.
It is known that there is disruption of the blood-brain barrier during terminal AIDS encephalitis in both human immunodeficiency virus (HIV)-infected humans and simian immunodeficiency virus (SIV)-infected rhesus macaques. Much, although by no means all, of the neuropathological findings of HIV and SIV infection involves accumulation of monocytes/macrophages that have likely crossed the blood-brain barrier (BBB). There is no convincing, rigorous, demonstration of HIV (or SIV) infecting endothelial cells in vivo. However, this is not to say that HIV infection would not have any effects on the physiology of microvascular brain endothelial cells. Because of the elaborate nature of cerebral microvessels, previous studies of cerebral endothelial cells have been constrained by sectioning artifacts. Examination of freshly isolated cerebral microvessels allows investigation of extended lengths of vessels (>150 mum) without sectioning artifacts. These studies determine the changes in the expression of the tight junction protein zo-1 protein on the endothelial cells of cerebral capillaries at terminal acquired immune deficiency syndrome, demonstrating that there is a decreased expression of zo-1 protein over extended lengths of microvessels.  相似文献   

8.
At present it is not known which form of immunity would be most effective against infection with human immunodeficiency virus (HIV). To evaluate the possible role of cellular immunity, we examined whether four HIV type 2-exposed but seronegative macaques developed cellular immune responses and determined whether these exposed macaques were resistant to mucosal transmission of simian immunodeficiency virus (SIV). Following intrarectal challenge with SIV, 2 monkeys were protected against detectable SIV replication and another showed suppressed viral replication compared to 14 persistently infected controls. The two protected monkeys demonstrated SIV-specific cytotoxic T lymphocytes before as well as after SIV challenge. Here we provide evidence that activation of the cell-mediated arm of the immune system only, without antibody formation, can control SIV replication in macaques. The results imply that vaccines that stimulate a strong and broad cellular immune response could prevent mucosal HIV transmission.  相似文献   

9.
Recombinant human adenoviruses (Ads) that replicate in the intestinal tract offer a novel, yet practical, means of immunoprophylaxis against a wide variety of viral and bacterial pathogens. For some infectious agents such as human immunodeficiency virus (HIV), the potential for residual infectious material in vaccine preparations must be eliminated. Therefore, recombinant human Ads that express noninfectious HIV or other microbial proteins are attractive vaccine candidates. To test such an approach for HIV, we chose an experimental model of AIDS based on simian immunodeficiency virus (SIV) infection of macaques. Our data demonstrate that the SIV Env gene products are expressed in cultured cells after infection with a recombinant Ad containing both SIV env and rev genes. An E3 deletion vector derived from a mutant of human Ad serotype 5 that efficiently replicates in both human and monkey cells was used to bypass the usual host range restriction of Ad infection. In addition, we show that the SIV rev gene is properly spliced from a single SIV subgenomic DNA fragment and that the Rev protein is expressed in recombinant Ad-SIV-infected human as well as monkey cells. The expression of SIV gene products in suitable live Ad vectors provides an excellent system for studying the regulation of SIV gene expression in cultured cells and evaluating the immunogenicity and protective efficacy of SIV proteins in macaques.  相似文献   

10.
Simian immunodeficiency virus (SIV) infection of macaques is a model for human immunodeficiency virus (HIV) infection. We have previously reported the construction and characterization of an SIV vector with a deletion in the nef gene (SIV(delta nef)) and expressing gamma interferon (SIV(HyIFN)) (L. Giavedoni and T. Yilma, J. Virol. 70:2247-2251, 1996). We now show that rhesus macaques vaccinated with SIV(HyIFN) have a lower viral load than a group similarly immunized with SIV(delta nef). Viral loads remained low in the SIV(HyIFN)-vaccinated group even though SIV expressing gamma interferon could not be isolated after 6 weeks postimmunization in these animals. All immunized and two naive control macaques became infected when challenged with virulent SIV(mac251), at 25 weeks postvaccination. In contrast to the two naive controls that died by 12 and 18 weeks postchallenge, all vaccinated animals remained healthy for more than 32 weeks. In addition, postchallenge cell-associated virus load was significantly lower in SIV(HyIFN)-immunized animals than in the group vaccinated with SIV(delta nef). These findings indicate that cytokine-expressing viruses can provide a novel approach for development of safe and efficacious live attenuated vaccines for AIDS.  相似文献   

11.
Background Tuberculosis (TB) and AIDS together present a devastating public health challenge. Over 3 million deaths every year are attributed to these twin epidemics. Annually, ~11 million people are coinfected with HIV and Mycobacterium tuberculosis (Mtb). AIDS is thought to alter the spontaneous rate of latent TB reactivation. Methodology Macaques are excellent models of both TB and AIDS. Therefore, it is conceivable that they can also be used to model coinfection. Using clinical, pathological, and microbiological data, we addressed whether latent TB infection in rhesus macaques can be reactivated by infection with simian immunodeficiency virus (SIV). Results A low‐dose aerosol infection of rhesus macaques with Mtb caused latent, asymptomatic TB infection. Infection of macaques exhibiting latent TB with a rhesus‐specific strain of SIV significantly reactivated TB. Conclusions Rhesus macaques are excellent model of TB/AIDS coinfection and can be used to study the phenomena of TB latency and reactivation.  相似文献   

12.
There is an urgent need for active immunization strategies that, if administered shortly after birth, could protect infants in developing countries from acquiring human immunodeficiency virus (HIV) infection through breast-feeding. Better knowledge of the immunogenic properties of vaccine candidates in infants and of the effect of maternal antibodies on vaccine efficacy will aid in the development of such a neonatal HIV vaccine. Simian immunodeficiency virus (SIV) infection of infant macaques is a useful animal model of pediatric HIV infection with which to address these questions. Groups of infant macaques were immunized at birth and 3 weeks of age with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol, and Env (MVA-SIVgpe) or live-attenuated SIVmac1A11. One MVA-SIVgpe-immunized group had maternally derived anti-SIV antibodies prior to immunization. Animals were challenged orally at 4 weeks of age with a genetically heterogeneous stock of virulent SIVmac251. Although all animals became infected, the immunized animals mounted better antiviral antibody responses, controlled virus levels more effectively, and had a longer disease-free survival than the unvaccinated infected monkeys. Maternal antibodies did not significantly reduce the efficacy of the MVA-SIVgpe vaccine. In conclusion, although the tested vaccines delayed the onset of AIDS, further studies are warranted to determine whether a vaccine that elicits stronger early immune responses at the time of virus exposure may be able to prevent viral infection or AIDS in infants.  相似文献   

13.
AIDS dementia and encephalitis are complications of AIDS occurring most frequently in patients who are immunosuppressed. The simian immunodeficiency virus (SIV) model used in this study was designed to reproducibly induce AIDS in macaques in order to examine the effects of a neurovirulent virus in this context. Pigtailed macaques (Macaca nemestrina) were coinoculated with an immunosuppressive virus (SIV/DeltaB670) and a neurovirulent molecularly cloned virus (SIV/17E-Fr), and more than 90% of the animals developed moderate to severe encephalitis within 6 months of inoculation. Viral load in plasma and cerebrospinal fluid (CSF) was examined longitudinally to onset of AIDS, and viral load was measured in brain tissue at necropsy to examine the relationship of systemic and central nervous system (CNS) viral replication to the development of encephalitis. In all animals, plasma viral load peaked at 10 to 14 days postinfection and remained high throughout infection with no correlation found between plasma viremia and SIV encephalitis. In contrast, persistent high levels of CSF viral RNA after the acute phase of infection correlated with the development of encephalitis. Although high levels of viral RNA were found in the CSF of all macaques (six of six) during the acute phase, this high level was maintained only in macaques developing SIV encephalitis (five of six). Furthermore, the level of both viral RNA and antigen in the brain correlated with the severity of the CNS lesions. The single animal in this group that did not have CNS lesions had no detectable viral RNA in any of the regions of the brain. The results substantiate the use of CSF viral load measurements in the postacute phase of SIV infection as a marker for encephalitis and CNS viral replication.  相似文献   

14.
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.  相似文献   

15.
Chronic immune activation is a key determinant of AIDS progression in HIV-infected humans and simian immunodeficiency virus (SIV)-infected macaques but is singularly absent in SIV-infected natural hosts. To investigate whether natural killer T (NKT) lymphocytes contribute to the differential modulation of immune activation in AIDS-susceptible and AIDS-resistant hosts, we compared NKT function in macaques and sooty mangabeys in the absence and presence of SIV infection. Cynomolgus macaques had significantly higher frequencies of circulating invariant NKT lymphocytes compared to both rhesus macaques and AIDS-resistant sooty mangabeys. Despite this difference, mangabey NKT lymphocytes were functionally distinct from both macaque species in their ability to secrete significantly more IFN-γ, IL-13, and IL-17 in response to CD1d/α-galactosylceramide stimulation. While NKT number and function remained intact in SIV-infected mangabeys, there was a profound reduction in NKT activation-induced, but not mitogen-induced, secretion of IFN-γ, IL-2, IL-10, and TGF-β in SIV-infected macaques. SIV-infected macaques also showed a selective decline in CD4+ NKT lymphocytes which correlated significantly with an increase in circulating activated memory CD4+ T lymphocytes. Macaques with lower pre-infection NKT frequencies showed a significantly greater CD4+ T lymphocyte decline post SIV infection. The disparate effect of SIV infection on NKT function in mangabeys and macaques could be a manifestation of their differential susceptibility to AIDS. Alternately, these data also raise the possibility that loss of anti-inflammatory NKT function promotes chronic immune activation in pathogenic SIV infection, while intact NKT function helps to protect natural hosts from developing immunodeficiency and aberrant immune activation.  相似文献   

16.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, ‘natural hosts’ of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to ‘fuel the fire’ of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection.  相似文献   

17.
Simian immunodeficiency virus (SIV) is known to result in an asymptomatic infection of its natural African monkey host. However, some SIV strains are capable of inducing AIDS-like symptoms and death upon experimental infection of Asian macaques. To further investigate the virulence of natural SIV isolates from African monkeys, pig-tailed (PT) macaques were inoculated intravenously with either of two recently discovered novel lentiviruses, SIVlhoest and SIVsun. Both viruses were apparently apathogenic in their natural hosts but caused immunodeficiency in PT macaques. Infection was characterized by a progressive loss of CD4(+) lymphocytes in the peripheral blood and lymph nodes, generalized lymphoid depletion, a wasting syndrome, and opportunistic infections, such as Mycobacterium avium or Pneumocystis carinii infections. However, unlike SIVsm/mac infection of macaques, SIVlhoest and SIVsun infections in PT macaques were not accompanied by high viral loads during the chronic disease stage. In addition, no significant correlation between the viral load at set point (12 weeks postinfection) and survival could be found. Five out of eight SIVlhoest-infected and three out of four SIVsun-infected macaques succumbed to AIDS during the first 5 years of infection. Thus, the survival of SIVsun- and SIVlhoest-infected animals was significantly longer than that of SIVagm- or SIVsm-infected macaques. All PT macaques maintained strong SIV antibody responses despite progression to SIV-induced AIDS. The development of immunodeficiency in the face of low viremia suggests that SIVlhoest and SIVsun infections of macaques may model unique aspects of the pathogenesis of human immunodeficiency virus infection in humans.  相似文献   

18.
Glutamate metabolism in HIV-infected macrophages: implications for the CNS   总被引:2,自引:0,他引:2  
Central nervous system disorders are still a common complication of human immunodeficiency virus (HIV) infection and can lead to dementia and death. They are mostly the consequences of an inflammatory macrophagic activation and relate to glutamate-mediated excitotoxicity. However, recent studies also suggest neuroprotective aspects of macrophage activation through the expression of glutamate transporters and glutamine synthetase. We thus aimed to study whether HIV infection or activation of macrophages could modulate glutamate metabolism in these cells. We assessed the effect of HIV infection on glutamate transporter expression as well as on glutamate uptake by macrophages and showed that glutamate transport was partially decreased in the course of virus replication, whereas excitatory amino acid transporter-2 (EAAT-2) gene expression was dramatically increased. The consequences of HIV infection on glutamine synthetase were also measured and for the first time we show the functional expression of this key enzyme in macrophages. This expression was repressed during virus production. We then quantified EAAT-1 and EAAT-2 gene expression as well as glutamate uptake in differentially activated macrophages and show that the effects of HIV are not directly related to pro- or anti-inflammatory mediators. Finally, this study shows that glutamate transport by macrophages is less affected than what has been described in astrocytes. Macrophages may thus play a role in neuroprotection against glutamate in the infected brain, through their expression of both EAATs and glutamine synthetase. Because glutamate metabolism by activated macrophages is sensitive to both HIV infection and inflammation, it may thus be of potential interest as a therapeutic target in HIV encephalitis. excitatory amino acid transporter; cystine-glutamate antiporter; glutathione; inflammation; oxidative stress; glutamine synthetase  相似文献   

19.
The pigtail macaque (Macaca nemestrina) is a common model for the study of AIDS. The pigtail major histocompatibility complex class I allele Mane-A*10 restricts an immunodominant simian immunodeficiency virus (SIV) Gag epitope (KP9) which rapidly mutates to escape T cell recognition following acute simian/human immunodeficiency virus infection. Two technologies for the detection of Mane-A*10 in outbred pigtail macaques were developed: reference strand-mediated conformational analysis and sequence-specific primer polymerase chain reaction. A Mane-A*10/KP9 tetramer was then developed to quantify CD8(+) T lymphocytes primed by multigenic DNA vaccination, which have previously been difficult to detect using standard interferon-gamma-based T cell assays. We also demonstrate mutational escape at KP9 following acute SIV infection. Mane-A*10(+) animals have lower set point SIV levels than Mane-A*10(-) animals, suggesting a significant fitness cost of escape. These studies pave the way for a more robust understanding of HIV vaccines in pigtail macaques.  相似文献   

20.
Whereas several recent AIDS vaccine strategies have protected rhesus macaques against a pathogenic simian/human immunodeficiency virus (SHIV)(89.6P) challenge, similar approaches have provided only modest, transient reductions in viral burden after challenge with virulent, pathogenic SIV, which is more representative of HIV infection of people. We show here that priming with replicating adenovirus recombinants encoding SIV env/rev, gag, and/or nef genes, followed by boosting with SIV gp120 or an SIV polypeptide mimicking the CD4 binding region of the envelope, protects rhesus macaques from intrarectal infection with the highly pathogenic SIV(mac251). Using trend analysis, significant reductions in acute-phase and set point viremia were correlated with anti-gp120 antibody and cellular immune responses, respectively. Within immunization groups exhibiting significant protection, a subset (39%) of macaques have exhibited either no viremia, cleared viremia, or controlled viremia at the threshold of detection, now more than 40 weeks postchallenge. This combination prime-boost strategy, utilizing replication competent adenovirus, is a promising alternative for HIV vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号