首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The osmotically inducible protein OsmC, like its better-characterized homolog, the organic hydroperoxide protein Ohr, is involved in defense against oxidative stress caused by exposure to organic hydroperoxides. The crystal structure of Escherichia coli OsmC reported here reveals that the protein is a tightly folded domain-swapped dimer with two active sites located at the monomer interface on opposite sides of the molecule. We demonstrate that OsmC preferentially metabolizes organic hydroperoxides over inorganic hydrogen peroxide. On the basis of structural and enzymatic similarities, we propose that the OsmC catalytic mechanism is analogous to that of the Ohr proteins and of the structurally unrelated peroxiredoxins, directly using highly reactive cysteine thiol groups to elicit hydroperoxide reduction.  相似文献   

2.
ohr (organic hydroperoxide resistance gene) is present in several species of bacteria, and its deletion renders cells specifically sensitive to organic peroxides. The goal of this work was to determine the biochemical function of Ohr from Xylella fastidiosa. All of the Ohr homologues possess two cysteine residues, one of them located in a VCP motif, which is also present in all of the proteins from the peroxiredoxin family. Therefore, we have investigated whether Ohr possesses thiol-dependent peroxidase activity. The ohr gene from X. fastidiosa was expressed in Escherichia coli, and the recombinant Ohr decomposed hydroperoxides in a dithiothreitol-dependent manner. Ohr was about twenty times more efficient to remove organic hydroperoxides than to remove H(2)O(2). This result is consistent with the organic hydroperoxide sensitivity of Delta ohr strains. The dependence of Ohr on thiol compounds was ascertained by glutamine synthetase protection assays. Approximately two thiol equivalents were consumed per peroxide removed indicating that Ohr catalyzes the following reaction: 2RSH + ROOH --> RSSR + ROH + H(2)O. Pretreatment of Ohr with N-ethyl maleimide and substitution of cysteine residues by serines inhibited this peroxidase activity indicating that both of the Ohr cysteines are important to the decomposition of peroxides. C125S still had a residual enzymatic activity indicating that Cys-61 is directly involved in peroxide removal. Monothiol compounds do not support the peroxidase activity of Ohr as well as thioredoxin from Saccharomyces cerevisiae and from Spirulina. Interestingly, dithiothreitol and dyhydrolipoic acid, which possess two sulfhydryl groups, do support the peroxidase activity of Ohr. Taken together our results unequivocally demonstrated that Ohr is a thiol-dependent peroxidase.  相似文献   

3.
As obligate parasites, Mycoplasma species are continuously exposed to oxidative damage due to host-generated peroxides and reactive oxygen species (ROS). In addition, the production of endogenous oxidants is believed to be a primary virulence mechanism of several Mollicute species, indicating that oxidative stress resistance is crucial to survival of these bacteria in the host milieu. Despite the abundance of oxidants at the site of infection, enzymes responsible for the detoxification of ROS have never been characterized in mycoplasmas. Here we characterize a homolog of the ohr (organic hydroperoxide resistance) family from Mycoplasma gallisepticum (encoding MGA1142). Unlike previously characterized ohr genes, the mga1142 gene is not upregulated in response to oxidative stress but displays a novel pattern of expression. Both organic and inorganic peroxides can act as substrates for MGA1142, but they are degraded with various efficiencies. Furthermore, cumene hydroperoxide, an aromatic peroxide metabolized with high efficiency by other Ohr proteins, was shown to rapidly inactivate MGA1142, accounting for the sensitivity of M. gallisepticum cells to this compound. Comparative modeling of the MGA1142 quaternary structure revealed that the active site of this molecule has a relatively wide conformation. These data indicate that the natural substrate for MGA1142 differs from that for previously characterized Ohr proteins. Triton X-114 partitioning demonstrated that MGA1142 is located in both cytosol and membrane fractions, suggesting that in vivo this molecule plays a role in the detoxification of both endogenous and exogenous peroxides. A model describing how MGA1142 is likely to be oriented in the cell membrane is presented.  相似文献   

4.
Ohr, a bacterial protein encoded by the Organic Hydroperoxide Resistance (ohr) gene, plays a critical role in resistance to organic hydroperoxides. In the present study, we show that the Cys-based thiol-dependent Ohr of Corynebacterium glutamicum decomposes organic hydroperoxides more efficiently than hydrogen peroxide. Replacement of either of the two Cys residues of Ohr by a Ser residue resulted in drastic loss of activity. The electron donors supporting regeneration of the peroxidase activity of the oxidized Ohr of C. glutamicum were principally lipoylated proteins (LpdA and Lpd/SucB). A Δohr mutant exhibited significantly decreased resistance to organic hydroperoxides and marked accumulation of reactive oxygen species (ROS) in vivo; protein carbonylation was also enhanced notably. The resistance to hydrogen peroxide also decreased, but protein carbonylation did not rise to any great extent. Together, the results unequivocally show that Ohr is essential for mediation of organic hydroperoxide resistance by C. glutamicum.  相似文献   

5.
The mshA::Tn5 mutant of Mycobacterium smegmatis does not produce mycothiol (MSH) and was found to markedly overproduce both ergothioneine and an ~15-kDa protein determined to be organic hydroperoxide resistance protein (Ohr). An mshA(G32D) mutant lacking MSH overproduced ergothioneine but not Ohr. Comparison of the mutant phenotypes with those of the wild-type strain indicated the following: Ohr protects against organic hydroperoxide toxicity, whereas ergothioneine does not; an additional MSH-dependent organic hydroperoxide peroxidase exists; and elevated isoniazid resistance in the mutant is associated with both Ohr and the absence of MSH. Purified Ohr showed high activity with linoleic acid hydroperoxide, indicating lipid hydroperoxides as the likely physiologic targets. The reduction of oxidized Ohr by NADH was shown to be catalyzed by lipoamide dehydrogenase and either lipoamide or DlaT (SucB). Since free lipoamide and lipoic acid levels were shown to be undetectable in M. smegmatis, the bound lipoyl residues of DlaT are the likely source of the physiological dithiol reductant for Ohr. The pattern of occurrence of homologs of Ohr among bacteria suggests that the ohr gene has been distributed by lateral transfer. The finding of multiple Ohr homologs with various sequence identities in some bacterial genomes indicates that there may be multiple physiologic targets for Ohr proteins.  相似文献   

6.
7.
8.
Organic hydroperoxide resistance proteins (Ohr) belong to a family of proteins that possess thiol-dependent peroxidase activity endowed by reactive cysteine residues able to reduce peroxides. The crystal structure of Ohr from Xylella fastidiosa in complex with polyethylene glycol, providing insights into enzyme-substrate interactions is described herein. In addition, crystallographic studies, molecular modeling and biochemical assays also indicated that peroxides derived from long chain fatty acids could be the biological substrates of Ohr. Because different oxidation states of the reactive cysteine were present in the Ohr structures from X. fastidiosa, Pseudomonas aeruginosa and Deinococcus radiodurans it was possible to envisage a set of snapshots along the coordinate of the enzyme-catalyzed reaction. The redox intermediates of X. fastidiosa Ohr observed in the crystals were further characterized in solution by electrospray ionization mass spectrometry and by biochemical approaches. In this study, the formation of an intramolecular disulfide bond and oxidative inactivation through the formation of a sulfonic acid derivative was unequivocally demonstrated for the first time. Because Ohr proteins are exclusively present in bacteria, they may represent promising targets for therapeutical drugs. In this regard, the structural and functional analyses of Ohr presented here might be very useful.  相似文献   

9.
10.
11.
Xanthomonas encounters highly toxic reactive oxygen species (ROS) from many sources, such as those generated by plants against invading bacteria, other soil bacteria and from aerobic respiration. Thus, conditions that alter intracellular ROS levels such as exposure to toxic metalloids would have profound effects on bacterial physiology. Here, we report that exposure of Xanthomonas campestris pv. phaseoli (Xp) to low levels of arsenic induces physiological cross-protection against killing by H(2)O(2) and organic hydroperoxide but not a superoxide generator. Cross-protection against H(2)O(2) and organic hydroperoxide toxicity was due to increased expression of genes encoding major peroxide-metabolizing enzymes such as alkyl hydroperoxide reductase (AhpC), catalase (KatA) and organic hydroperoxide resistance protein (Ohr). Arsenic-induced protection against H(2)O(2) and organic hydroperoxide requires the peroxide stress response regulators, OxyR and OhrR, respectively. Moreover, analyses of double mutants of the major H(2)O(2) and organic hyproperoxide-scavenging enzymes, Xp ahpC katA and Xp ahpC ohr, respectively, suggested the existence of unidentified OxyR- and OhrR-regulated genes that are involved in arsenic-induced resistance to H(2)O(2) and organic hyproperoxide killing in Xp. These arsenic-induced physiological alterations could play an important role in bacterial survival both in the soil environment and during plant-pathogen interactions.  相似文献   

12.
Alkyl hydroperoxide reductase (ahpC) and organic hydroperoxide resistance (ohr) are distinct genes, structurally and regulatory, but have similar physiological functions. In Xanthomonas campestris pv. phaseoli inactivation of either gene results in increased sensitivity to killing with organic peroxides. An ahpC1-ohr double mutant was highly sensitive to both growth inhibition and killing treatment with organic peroxides. High level expression of ahpC or ohr only partially complemented the phenotype of the double mutant, suggesting that these genes function synergistically, but through different pathways, to protect Xanthomonas from organic peroxide toxicity. Functional analyses of Ohr and AhpC abilities to degrade organic hydroperoxides revealed that both Ohr and AhpC could degrade tert-butyl hydroperoxide (tBOOH) while the former was more efficient at degrading cumene hydroperoxide (CuOOH). Expression analysis of these genes in the mutants showed no compensatory alterations in the levels of AhpC or Ohr. However, CuOOH induced expression of these genes in the mutants was affected. CuOOH induced ahpC expression was higher in the ohr mutant than in the parental strain; in contrast, the ahpC mutation has no effect on the level of induced ohr expression. These analyses reveal complex physiological roles and expression patterns of seemingly functionally similar genes.  相似文献   

13.
14.
15.
Burkholderia pseudomallei is a NIAID Category B microorganism responsible for melioidosis. Here we report backbone and side chain NMR assignments for the 139-residue, homodimeric, organic hydroperoxide resistance protein (Ohr) from this organism.  相似文献   

16.
Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.  相似文献   

17.

Background

Corynebacterium glutamicum is a well-known producer of various l-amino acids in industry. During the fermenting process, C. glutamicum unavoidably encounters oxidative stress due to a specific reactive oxygen species (ROS) produced by consistent adverse conditions. To combat the ROS, C. glutamicum has developed many common disulfide bond-based regulatory devices to control a specific set of antioxidant genes. However, nothing is known about the mixed disulfide between the protein thiol groups and the mycothiol (MSH) (S-mycothiolation)-based sensor. In addition, no OhrR (organic hydroperoxide resistance regulator) homologs and none of the organic hydroperoxide reductase (Ohr) sensors have been described in the alkyl hydroperoxide reductase CF-missing C. glutamicum, while organic hydroperoxides (OHPs)-specific Ohr was a core detoxification system.

Results

In this study, we showed that the C. glutamicum OhsR acted as an OHPs sensor that activated ohr expression. OhsR conferred resistance to cumene hydroperoxide (CHP) and t-butyl hydroperoxide but not H2O2, hypochlorous acid, and diamide; this outcome was substantiated by the fact that the ohsR-deficient mutant was sensitive to OHPs but not inorganic peroxides. The DNA binding activity of OhsR was specifically activated by CHP. Mutational analysis of the two cysteines (Cys125 and Cys261) showed that Cys125 was primarily responsible for the activation of DNA binding. The oxidation of Cys125 produced a sulfenic acid (C125-SOH) that subsequently reacted with MSH to generate S-mycothiolation that was required to activate the ohr expression. Therefore, OhsR regulated the ohr expression using an S-mycothiolation mechanism in vivo.

Conclusion

This is the first report demonstrating that the regulatory OhsR specifically sensed OHPs stress and responded to it by activating a specific ohr gene under its control using an S-mycothiolated mechanism.
  相似文献   

18.
The nature of the active site and the substrate specificity of poplar type II peroxiredoxin, an enzyme which preferentially uses glutaredoxin as an electron donor, were investigated in this study. The type II peroxiredoxin is able to use phospholipid hydroperoxide nearly as efficiently as hydrogen peroxide. Two of the hyper-conserved amino acid residues in peroxiredoxins have been altered, by site-directed mutagenesis, generating the mutants T48V and R129Q. The two mutant proteins are inactive with hydrogen peroxide or tertiary butyl hydroperoxide as substrates. On the other hand, the mutant enzymes catalyse the degradation of cumene hydroperoxide with low efficiency. This suggests that the thiol-dependent regeneration process of the catalytic cysteine is not affected by the mutations and that all substrates are not accommodated identically in the active site.  相似文献   

19.
Oxidative stress is a widespread challenge for living organisms, and especially so for parasitic ones, given the fact that their hosts can produce reactive oxygen species (ROS) as a mechanism of defense. Thus, long lived parasites, such as the flatworm Schistosomes, have evolved refined enzymatic systems capable of detoxifying ROS. Among these, glutathione peroxidases (Gpx) are a family of sulfur or selenium‐dependent isozymes sharing the ability to reduce peroxides using the reducing equivalents provided by glutathione or possibly small proteins such as thioredoxin. As for other frontline antioxidant enzymatic systems, Gpxs are localized in the tegument of the Schistosomes, the outermost defense layer. In this article, we present the first crystal structure at 1.0 and 1.7 Å resolution of two recombinant SmGpxs, carrying the active site mutations Sec43Cys and Sec43Ser, respectively. The structures confirm that this enzyme belongs to the monomeric class 4 (phospholipid hydroperoxide) Gpx. In the case of the Sec to Cys mutant, the catalytic Cys residue is oxidized to sulfonic acid. By combining static crystallography with molecular dynamics simulations, we obtained insight into the substrate binding sites and the conformational changes relevant to catalysis, proposing a role for the unusual reactivity of the catalytic residue. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号