首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsp90 is a molecular chaperone that acts in concert with Hsp70 to mediate the folding of many important regulatory proteins (e.g., protein kinases) into functional conformations. The chaperone activity of Hsp90 is primarily regulated by its cochaperones. For example, the Hsp90 cochaperone Cdc37 recruits Hsp90 to protein kinases as well as inhibiting its ATPase activity to promote the binding of Hsp90 to protein kinases. Harc is a structurally related Hsp90 cochaperone with a three-domain structure in which the middle domain binds Hsp90. In contrast to Cdc37 though, Harc also binds to Hsp70 and Hop (Hsp70/Hsp90 organizing protein). Here we demonstrate that deletion of the C-terminal domain of Harc abolished the binding of Hsp70 and Hop and reduced the affinity of Hsp90 binding to Harc. Significantly, the C-terminal domain of Harc bound Hsp70, but it did not bind Hop or Hsp90. Size exclusion chromatography of cell lysates revealed that Hop only formed a complex with Harc in the presence of Hsp90 and Hsp70, consistent with a model in which the interaction of Hop with Harc is mediated via the binding of Hop to Harc-bound Hsp90 and Hsp70. Notably, heat shock resulted in a marked decrease in the solubility of Harc, a response that was further augmented by the deletion of the C-terminal domain of Harc. This latter finding is especially interesting given that bioinformatics analysis indicated that cells may express splice variants of Harc that encode C-terminally truncated Harc isoforms. Together, these findings indicate that the C-terminal domain of Harc is a key determinant of its cochaperone functions.  相似文献   

2.
Although little is known about the precise mechanisms by which the molecular chaperone Hsp90 recognizes its client proteins, Cdc37 has been shown to play a critical role in the targeting of Hsp90 to client protein kinases. Described here is the identification and characterization of a novel 35-kDa human protein that is 31% identical to Cdc37. We have named this novel protein Harc (Hsp90-associating relative of Cdc37). Northern blot analysis revealed the presence of Harc mRNA in several human tissues, including liver, skeletal muscle, and kidney. Biochemical fractionation and immunofluorescent localization of epitope-tagged Harc (i.e. FLAG-Harc) indicated that it is present in the cytoplasm of cells. FLAG-Harc binds Hsp90 but unlike Cdc37 does not bind Src family kinases or Raf-1. Mapping experiments indicate that the central 120 amino acids of both Harc and Cdc37 constitute a Hsp90-binding domain not described previously. FLAG-Harc is basally serine-phosphorylated and hyperphosphorylated when co-expressed with an activated mutant of the Src family kinase Hck. Notably, FLAG-Harc forms complexes with Hsp90, Hsp70, p60Hop, immunophilins, and an unidentified p22 protein but not with the Hsp90 co-chaperone p23. Thus Harc likely represents a novel participant in Hsp90-mediated protein folding, potentially targeting Hsp90 to Hsp70-client protein heterocomplexes.  相似文献   

3.
Cdc37 is a relatively poorly conserved and yet essential molecular chaperone. It has long been thought to function primarily as an accessory factor for Hsp90, notably directing Hsp90 to kinases as substrates. More recent discoveries challenge this simplistic view. Cdc37 client proteins other than kinases have now been found, and Cdc37 displays a variety of Hsp90-independent activities both in vitro and in vivo. It can function as a molecular chaperone by itself, interact with other Hsp90 cochaperones in the absence of Hsp90, and even support yeast growth and protein folding without its Hsp90-binding domain. Thus, for many substrates, there may be many alternative chaperone pathways involving Cdc37, Hsp90, or both.  相似文献   

4.
Shao J  Irwin A  Hartson SD  Matts RL 《Biochemistry》2003,42(43):12577-12588
Hsp90 and its co-chaperone Cdc37 facilitate the folding and activation of numerous protein kinases. In this report, we examine the structure-function relationships that regulate the interaction of Cdc37 with Hsp90 and with an Hsp90-dependent kinase, the heme-regulated eIF2alpha kinase (HRI). Limited proteolysis of native and recombinant Cdc37, in conjunction with MALDI-TOF mass spectrometry analysis of peptide fragments and peptide microsequencing, indicates that Cdc37 is comprised of three discrete domains. The N-terminal domain (residues 1-126) interacts with client HRI molecules. Cdc37's middle domain (residues 128-282) interacts with Hsp90, but does not bind to HRI. The C-terminal domain of Cdc37 (residues 283-378) does not bind Hsp90 or kinase, and no functions were ascribable to this domain. Functional assays did, however, suggest that residues S127-G163 of Cdc37 serve as an interdomain switch that modulates the ability of Cdc37 to sense Hsp90's conformation and thereby mediate Hsp90's regulation of Cdc37's kinase-binding activity. Additionally, scanning alanine mutagenesis identified four amino acid residues at the N-terminus of Cdc37 that are critical for high-affinity binding of Cdc37 to client HRI molecules. One mutation, Cdc37/W7A, also implicated this region as an interpreter of Hsp90's conformation. Results illuminate the specific Cdc37 motifs underlying the allosteric interactions that regulate binding of Hsp90-Cdc37 to immature kinase molecules.  相似文献   

5.
Hsp90 is an abundant and highly conserved chaperone that functions at later stages of protein folding to maintain and regulate the activity of client proteins. Using a recently described in vitro system to fold a functional model kinase Chk1, we performed a side-by-side comparison of the Hsp90-dependent chaperoning of Chk1 to that of the progesterone receptor (PR) and show that these distinct types of clients have different chaperoning requirements. The less stable PR required more total chaperone protein(s) and p23, whereas Chk1 folding was critically dependent on Cdc37. When the 2 clients were reconstituted under identical conditions, each client folding was dose dependent for Hsp90 protein levels and was inhibited by geldanamycin. Using this tractable system, we found that Chk1 kinase folding was more effective if we used a type II Hsp40 cochaperone, whereas PR is chaperoned equally well with a type I or type II Hsp40. Additional dissection of Chk1-chaperone complexes and the resulting kinase activity suggests that kinase folding, like that previously shown for PR, is a dynamic, multistep process. Importantly, the cochaperones Hop and Cdc37 cooperate as the kinase transitions from immature Hsp70- to mature Hsp90-predominant complexes.  相似文献   

6.
In eukaryotic cells, Hsp90 chaperones assist late folding steps of many regulatory protein clients by a complex ATPase cycle. Binding of clients to Hsp90 requires prior interaction with Hsp70 and a transfer reaction that is mediated by the co-chaperone Sti1/Hop. Sti1 furthers client transfer by inhibiting Hsp90's ATPase activity. To better understand how Sti1 prepares Hsp90 for client acceptance, we characterized the interacting domains and analysed how Hsp90 and Sti1 mutually influence their conformational dynamics using hydrogen exchange mass spectrometry. Sti1 stabilizes several regions in all three domains of Hsp90 and slows down dissociation of the Hsp90 dimer. Our data suggest that Sti1 inhibits Hsp90's ATPase activity by preventing N-terminal dimerization and docking of the N-terminal domain with the middle domain. Using crosslinking and mass spectrometry we identified Sti1 segments, which are in close vicinity of the N-terminal domain of Hsp90. We found that the length of the linker between C-terminal dimerization domain and the C-terminal MEEVD motif is important for Sti1 association rates and propose a kinetic model for Sti1 binding to Hsp90.  相似文献   

7.
Terasawa K  Minami Y 《The FEBS journal》2005,272(18):4684-4690
The molecular chaperone Hsp90 is distinct from Hsp70 and chaperonin in that client proteins are apparently restricted to a subset of proteins categorized as cellular signaling molecules. Among these, many specific protein kinases require the assistance of Hsp90 and its co-chaperone Cdc37/p50 for their biogenesis. A series of Cdc37 deletion mutants revealed that all mutants capable of binding Raf-1 possess amino acid residues between 181 and 200. The 20-residue region is sufficient and, in particular, a five-residue segment (residue 191-195) is essential for binding to Raf-1. These five residues are present in one alpha helix (residues 184-199) in the middle of Cdc37, which is unexpectedly nested within the Hsp90-interacting domain of Cdc37, which was recently determined by crystallography, but does not seem to contribute to direct contact with Hsp90. Furthermore, an N-terminally truncated mutant of Cdc37 composed of residues 181-378 was shown to bind the N-terminal portion of Raf-1 (subdomains I-IV). This mutant can bind not only other Hsp90 client protein kinases, Akt1, Aurora B and Cdk4, but also Cdc2 and Cdk2, which to date have not been shown to physically interact with Cdc37. These results suggest that a region of Cdc37 other than the client-binding site may be responsible for discriminating client protein kinases from others.  相似文献   

8.
Cdc37 is a molecular chaperone required for folding of protein kinases. It functions in association with Hsp90, although little is known of its mechanism of action or where it fits into a folding pathway involving other Hsp90 cochaperones. Using a genetic approach with Saccharomyces cerevisiae, we show that CDC37 overexpression suppressed a defect in v-Src folding in yeast deleted for STI1, which recruits Hsp90 to misfolded clients. Expression of CDC37 truncation mutants that were deleted for the Hsp90-binding site stabilized v-Src and led to some folding in both sti1Delta and hsc82Delta strains. The protein kinase-binding domain of Cdc37 was sufficient for yeast cell viability and permitted efficient signaling through the yeast MAP kinase-signaling pathway. We propose a model in which Cdc37 can function independently of Hsp90, although its ability to do so is restricted by its normally low expression levels. This may be a form of regulation by which cells restrict access to Cdc37 until it has passed through a triage involving other chaperones such as Hsp70 and Hsp90.  相似文献   

9.
Yun BG  Huang W  Leach N  Hartson SD  Matts RL 《Biochemistry》2004,43(25):8217-8229
Hsp90 functions to facilitate the folding of newly synthesized and denatured proteins. Hsp90 function is modulated through its interactions with cochaperones and the binding and hydrolysis of ATP. Recently, novobiocin has been shown to bind to a second nucleotide binding site located within the C-terminal domain of Hsp90. In this report, we have examined the effect of novobiocin on Hsp90 function in reticulocyte lysate. Novobiocin specifically inhibited the maturation of the heme-regulated eIF2alpha kinase (HRI) in a concentration-dependent manner. Novobiocin induced the dissociation of Hsp90 and Cdc37 from immature HRI, while the Hsp90 cochaperones p23, FKBP52, and protein phosphatase 5 remained associated with immature HRI. Proteolytic fingerprinting of Hsp90 indicated that novobiocin had a distinct effect on the conformation of Hsp90, and molybdate lowered the concentration of novobiocin required to alter Hsp90's conformation by 10-fold. The recombinant C-terminal domain of Hsp90 adopted a proteolytic resistant conformation in the presence of novobiocin, indicating that alteration of Hsp90/cochaperone interactions was not the cause of the novobiocin-induced protease resistance within Hsp90's C-terminal domain. The concentration dependence of this novobiocin-induced conformation change correlated with the dissociation of Hsp90 and Cdc37 from immature HRI and novobiocin-induced inhibition of Hsp90/Cdc37-dependent activation of HRI's autokinase activity. The data suggest that binding of novobiocin to the C-terminal nucleotide binding site of Hsp90 induces a change in Hsp90's conformation leading to the dissociation of bound kinase. The unique structure and properties of novobocin-bound Hsp90 suggest that it may represent the "client-release" conformation of the Hsp90 machine.  相似文献   

10.
Protein kinases are the most prominent group of heat shock protein 90 (Hsp90) clients and are recruited to the molecular chaperone by the kinase-specific cochaperone cell division cycle 37 (Cdc37). The interaction between Hsp90 and nematode Cdc37 is mediated by binding of the Hsp90 middle domain to an N-terminal region of Caenorhabditis elegans Cdc37 (CeCdc37). Here we map the binding site by NMR spectroscopy and define amino acids relevant for the interaction between CeCdc37 and the middle domain of Hsp90. Apart from these distinct Cdc37/Hsp90 interfaces, binding of the B-Raf protein kinase to the cochaperone is conserved between mammals and nematodes. In both cases, the C-terminal part of Cdc37 is relevant for kinase binding, whereas the N-terminal domain displaces the nucleotide from the kinase. This interaction leads to a cooperative formation of the ternary complex of Cdc37 and kinase with Hsp90. For the mitogen-activated protein kinase extracellular signal-regulated kinase 2 (Erk2), we observe that certain features of the interaction with Cdc37·Hsp90 are conserved, but the contribution of Cdc37 domains varies slightly, implying that different kinases may utilize distinct variations of this binding mode to interact with the Hsp90 chaperone machinery.  相似文献   

11.
12.
The heat shock protein Hsp90 plays a key, but poorly understood role in the folding, assembly and activation of a large number of signal transduction molecules, in particular kinases and steroid hormone receptors. In carrying out these functions Hsp90 hydrolyses ATP as it cycles between ADP- and ATP-bound forms, and this ATPase activity is regulated by the transient association with a variety of co-chaperones. Cdc37 is one such co-chaperone protein that also has a role in client protein recognition, in that it is required for Hsp90-dependent folding and activation of a particular group of protein kinases. These include the cyclin-dependent kinases (Cdk) 4/6 and Cdk9, Raf-1, Akt and many others. Here, the biochemical details of the interaction of human Hsp90 beta and Cdc37 have been characterised. Small angle X-ray scattering (SAXS) was then used to study the solution structure of Hsp90 and its complexes with Cdc37. The results suggest a model for the interaction of Cdc37 with Hsp90, whereby a Cdc37 dimer binds the two N-terminal domain/linker regions in an Hsp90 dimer, fixing them in a single conformation that is presumably suitable for client protein recognition.  相似文献   

13.
The molecular chaperone Hsp90 is essential for the correct folding, maturation and activation of a diverse array of client proteins, including several key constituents of oncogenic processes. Hsp90 has become a focus of cancer research, since it represents a target for direct prophylaxis against multistep malignancy. Hydrogen-exchange mass spectrometry was used to study the structural and conformational changes undergone by full-length human Hsp90beta in solution upon binding of the kinase-specific co-chaperone Cdc37 and two Hsp90 ATPase inhibitors: Radicicol and the first-generation anticancer drug DMAG. Changes in hydrogen exchange pattern in the complexes in regions of Hsp90 remote to the ligand-binding site were observed indicating long-range effects. In particular, the interface between the N-terminal domain and middle domains exhibited significant differences between the apo and complexed forms. For the inhibitors, differences in the interface between the middle domain and the C-terminal domain were also observed. These data provide important insight into the structure of the biologically active form of the protein.  相似文献   

14.
The C-terminal domain of Hsp90 displays independent chaperone activity, mediates dimerization, and contains the MEEVD motif essential for interaction with tetratricopeptide repeat-containing immunophilin cochaperones assembled in mature steroid receptor complexes. An alpha-helical region, upstream of the MEEVD peptide, helps form the dimerization interface and includes a hydrophobic microdomain that contributes to the Hsp90 interaction with the immunophilin cochaperones and corresponds to the binding site for novobiocin, a coumarin-related Hsp90 inhibitor. Mutation of selected residues within the hydrophobic microdomain significantly impacted the chaperone function of a recombinant C-terminal Hsp90 fragment and novobiocin inhibited wild-type chaperone activity. Prior incubation of the Hsp90 fragment with novobiocin led to a direct blockade of immunophilin cochaperone binding. However, the drug had little influence on the pre-formed Hsp90-immunophilin complex, suggesting that bound cochaperones mask the novobiocin-binding site. We observed a differential effect of the drug on Hsp90-immunophilin interaction, suggesting that the immunophilins make distinct contacts within the C-terminal domain to specifically modulate Hsp90 function. Novobiocin also precluded the interaction of full-length Hsp90 with the p50(cdc37) cochaperone, which targets the N-terminal nucleotide-binding domain, and is prevalent in Hsp90 complexes with protein kinase substrates. Novobiocin therefore acts locally and allosterically to induce conformational changes within multiple regions of the Hsp90 protein. We provide evidence that coumermycin A1, a coumarin structurally related to novobiocin, interferes with dimerization of the Hsp90 C-terminal domain. Coumarin-based inhibitors then may antagonize Hsp90 function by inducing a conformation favoring separation of the C-terminal domains and release of substrate.  相似文献   

15.
Cdc37 is a protein kinase-targeting molecular chaperone, which cooperates with Hsp90 to assist the folding, assembly and maturation of various signaling kinases. It consists of three distinct domains: the N-terminal, middle, and C-terminal domain. While the middle domain is an Hsp90-binding domain, the N-terminal domain is recognized as a kinase-interacting domain. The N-terminal domain contains a well-conserved Ser residue at position 13, and the phosphorylation at this site has been shown to be a prerequisite for the interaction between Cdc37 and signaling kinases. Although the phosphorylation of Ser13 might induce some conformational change in Cdc37 molecule, little is known about the structure of the N-terminal domain of Cdc37. We examined the structural and dynamic properties of several fragment proteins corresponding to the N-terminal region of Cdc37 by circular dichroism and solution NMR spectroscopy. We found that the N-terminal domain of Cdc37 exhibits highly dynamic structure, and it exists in the equilibrium between α-helical and more disordered structures. We also found that phosphorylation at Ser13 did not significantly change the overall structure of N-terminal fragment protein of Cdc37. The results suggested that more complicated mechanisms might be necessary to explain the phosphorylation-activated interaction of Cdc37 with various kinases.  相似文献   

16.
Hsp90 is an abundant molecular chaperone involved in many biological systems. We report here the crystal structures of the unliganded and ADP bound fragments containing the N-terminal and middle domains of HtpG, an E. coli Hsp90. These domains are not connected through a flexible linker, as often portrayed in models, but are intimately associated with one another. The individual HtpG domains have similar folding to those of DNA gyrase B but assemble differently, suggesting somewhat different mechanisms for the ATPase superfamily. ADP binds to a subpocket of a large site that is jointly formed by the N-terminal and middle domains and induces conformational changes of the N-terminal domain. We speculate that this large pocket serves as a putative site for binding of client proteins/cochaperones. Modeling shows that ATP is not exposed to the molecular surface, thus implying that ATP activation of hsp90 chaperone activities is accomplished via conformational changes.  相似文献   

17.
Cdc37 is a molecular chaperone that interacts with a range of clients and co-chaperones, forming various high molecular mass complexes. Cdc37 sequence homology among species is low. High homology between yeast and metazoan proteins is restricted to the extreme N-terminal region, which is known to bind clients that are predominantly protein kinases. We show that despite the low homology, both Saccharomyces cerevisiae and human Cdc37 are able to substitute for the Schizosaccharomyces pombe protein in a strain deleted for the endogenous cdc37 gene. Expression of a construct consisting of only the N-terminal domain of S. pombe Cdc37, lacking the postulated heat-shock protein (Hsp) 90-binding and homodimerization domains, can also sustain cellular viability, indicating that Cdc37 dimerization and interactions with the cochaperone Hsp90 may not be essential for Cdc37 function in S. pombe. Biochemical investigations showed that a small proportion of total cellular Cdc37 occurs in a high molecular mass complex that also contains Hsp90. These data indicate that the N-terminal domain of Cdc37 carries out essential functions independently of the Hsp90-binding domain and dimerization of the chaperone itself.  相似文献   

18.
Scroggins BT  Prince T  Shao J  Uma S  Huang W  Guo Y  Yun BG  Hedman K  Matts RL  Hartson SD 《Biochemistry》2003,42(43):12550-12561
The 90 kDa heat shock protein (Hsp90) cooperates with its co-chaperone Cdc37 to provide obligatory support to numerous protein kinases involved in the regulation of cellular signal transduction pathways. In this report, crystal structures of protein kinases were used to guide the dissection of two kinases [the Src-family tyrosine kinase, Lck, and the heme-regulated eIF2alpha kinase (HRI)], and the association of Hsp90 and Cdc37 with these constructs was assessed. Hsp90 interacted with both the N-terminal (NL) and C-terminal (CL) lobes of the kinases' catalytic domains. In contrast, Cdc37 interacted only with the NL. The Hsp90 antagonist molybdate was necessary to stabilize the interactions between isolated subdomains and Hsp90 or Cdc37, but the presence of both lobes of the kinases' catalytic domain generated a stable salt-resistant chaperone-client heterocomplex. The Hsp90 co-chaperones FKBP52 and p23 interacted with the catalytic domain and the NL of Lck, whereas protein phosphatase 5 demonstrated unique modes of kinase binding. Cyp40 was a salt labile component of Hsp90 complexes formed with the full-length, catalytic domains, and N-terminal catalytic lobes of Lck and HRI. Additionally, dissections identify a specific kinase motif that triggers Hsp90's conformational switching to a high-affinity client binding state. Results indicate that the Hsp90 machine acts as a versatile chaperone that recognizes multiple regions of non-native proteins, while Cdc37 binds to a more specific kinase segment, and that concomitant recognition of multiple client segments is communicated to generate or stabilize high-affinity chaperone-client heterocomplexes.  相似文献   

19.
Hsp90 is an essential molecular chaperone required for the folding and activation of many hundreds of cellular "client" proteins. The ATP-dependent chaperone cycle involves significant conformational rearrangements of the Hsp90 dimer and interaction with a network of cochaperone proteins. Little is known about the mechanism of client protein binding or how cochaperone interactions modulate Hsp90 conformational states. We have determined the cryo-EM structure of the human Hsp90:Hop complex that receives client proteins from the Hsp70 chaperone. Hop stabilizes an alternate Hsp90 open state, where hydrophobic client-binding surfaces have converged and the N-terminal domains have rotated and match the closed, ATP conformation. Hsp90 is thus simultaneously poised for client loading by Hsp70 and subsequent N-terminal dimerization and ATP hydrolysis. Upon binding of a single Hsp70, the Hsp90:Hop conformation remains essentially unchanged. These results identify distinct functions for the Hop cochaperone, revealing an asymmetric mechanism for Hsp90 regulation and client loading.  相似文献   

20.
Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37) and recruitment of the ATPase activating cochaperone AHA1, but the molecular regulation of this complex process at the cellular level is poorly understood. We demonstrate that a series of tyrosine phosphorylation events, involving both p50(Cdc37) and Hsp90, are minimally sufficient to provide directionality to the chaperone cycle. p50(Cdc37) phosphorylation on Y4 and Y298 disrupts client-p50(Cdc37) association, while Hsp90 phosphorylation on Y197 dissociates p50(Cdc37) from Hsp90. Hsp90 phosphorylation on Y313 promotes recruitment of AHA1, which stimulates Hsp90 ATPase activity, furthering the chaperoning process. Finally, at completion of the chaperone cycle, Hsp90 Y627 phosphorylation induces dissociation of the client and remaining cochaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号