首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures of N-termini of helices in proteins.   总被引:8,自引:7,他引:1       下载免费PDF全文
We have surveyed 393 N-termini of alpha-helices and 156 N-termini of 3(10)-helices in 85 high resolution, non-homologous protein crystal structures for N-cap side-chain rotamer preferences, hydrogen bonding patterns, and solvent accessibilities. We find very strong rotamer preferences that are unique to N-cap sites. The following rules are generally observed for N-capping in alpha-helices: Thr and Ser N-cap side chains adopt the gauche - rotamer, hydrogen bond to the N3 NH and have psi restricted to 164 +/- 8 degrees. Asp and Asn N-cap side chains either adopt the gauche - rotamer and hydrogen bond to the N3 NH with psi = 172 +/- 10 degrees, or adopt the trans rotamer and hydrogen bond to both the N2 and N3 NH groups with psi = 1-7 +/- 19 degrees. With all other N-caps, the side chain is found in the gauche + rotamer so that the side chain does not interact unfavorably with the N-terminus by blocking solvation and psi is unrestricted. An i, i + 3 hydrogen bond from N3 NH to the N-cap backbone C = O in more likely to form at the N-terminus when an unfavorable N-cap is present. In the 3(10)-helix Asn and Asp remain favorable N-caps as they can hydrogen bond to the N2 NH while in the trans rotamer; in contrast, Ser and Thr are disfavored as their preferred hydrogen bonding partner (N3 NH) is inaccessible. This suggests that Ser is the optimum choice of N-cap when alpha-helix formation is to be encouraged while 3(10)-helix formation discouraged. The strong energetic and structural preferences found for N-caps, which differ greatly from positions within helix interiors, suggest that N-caps should be treated explicitly in any consideration of helical structure in peptides or proteins.  相似文献   

2.
The distributions of side-chain conformations in 258 crystal structures of oligopeptides have been analyzed. The sample contains 321 residues having side chains that extend beyond the C beta atom. Statistically observed preferences of side-chain dihedral angles are summarized and correlated with stereochemical and energetic constraints. The distributions are compared with observed distributions in proteins of known X-ray structures and with computed minimum-energy conformations of amino acid derivatives. The distributions are similar in all three sets of data, and they appear to be governed primarily by intraresidue interactions. In side chains with no beta-branching, the most important interactions that determine chi 1 are those between the C gamma H2 group and atoms of the neighboring peptide groups. As a result, the g- conformation (chi 1 congruent to -60 degrees) occurs most frequently for rotation around the C alpha-C beta bond in oligopeptides, followed by the t conformation (chi 1 congruent to 180 degrees), while the g+ conformation (chi 1 congruent to 60 degrees) is least favored. In residues with beta-branching, steric repulsions between the C gamma H2 or C gamma H3 groups and backbone atoms govern the distribution of chi 1. The extended (t) conformation is highly favored for rotation around the C beta-C gamma and C gamma-C delta bonds in unbranched side chains, because the t conformer has a lower energy than the g+ and g- conformers in hydrocarbon chains. This study of the observed side-chain conformations has led to a refinement of one of the energy parameters used in empirical conformational energy computations.  相似文献   

3.
Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine‐based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N‐terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine‐based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac–Pro–Pro–Ala–Lys–Ala–Lys–Ala–Lys–Ala–NH2) is designed to assess the effect of N‐terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac–Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) and A3 (Ac–d Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) with N‐terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i , i  + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1 , A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature‐dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β‐strand conformation, which is consistent with the previous studies. The results illuminate the effect of N‐terminal diproline and charged side chains in dictating the preferences for extended‐β, semi‐extended PPII and helical conformation in alanine‐based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Emberly EG  Miller J  Zeng C  Wingreen NS  Tang C 《Proteins》2002,47(3):295-304
Using an off-lattice model, we fully enumerate folded conformations of polypeptide chains of up to N = 19 monomers. Structures are found to differ markedly in designability, defined as the number of sequences with that structure as a unique lowest-energy conformation. We find that designability is closely correlated with the pattern of surface exposure of the folded structure. For longer chains, complete enumeration of structures is impractical. Instead, structures can be randomly sampled, and relative designability estimated either from designability within the random sample, or directly from surface-exposure pattern. We compare the surface-exposure patterns of those structures identified as highly designable to the patterns of naturally occurring proteins.  相似文献   

5.
The rates of deamidation of Asn and Gln residues in peptides and proteins depend upon both the identity of other nearby amino acid residues, some of which can catalyze the deamidation reaction of the Asn and Gln side chains, and upon polypeptide conformation. Proximal amino acids can be contiguous in sequence or brought close to Asn or Gln side chains by higher order structure of the protein. Local polypeptide conformation can stabilize the oxyanion transition state of the deamidation reaction and also enable deamidation through the beta-aspartyl shift mechanism. In this paper, the environments of Asn and Gln residues in known protein structures are examined to determine the configuration and identity of groups which participate in deamidation reactions. Sequence information is also analyzed and shown to support evolutionary selection against the occurrence of certain potentially catalytic amino acids adjacent to Asn and Gln in proteins. This negative selection supports a functional role for deamidation in those non-mutant proteins in which it occurs.  相似文献   

6.
A Caflisch  P Niederer  M Anliker 《Proteins》1992,13(3):223-230
A new two-step procedure has been developed for the docking of flexible oligopeptide chains of unknown conformation to static proteins of known structure. In the first step positions and conformations are sampled and the association energy minimized starting from an approximate preselected docking position. The resulting conformations are further optimized in the second step by a Metropolis Monte Carlo minimization, which optimizes each of these structures. The method has been tested on the HIV-1 aspartic proteinase complex with an inhibitor, whose crystallographic structure is known at 2.3 A resolution. Furthermore, the application of this method to the docking of the hendecapeptide 58-68 of the influenza A virus matrix protein to the HLA-A2 molecule produced results which are in agreement with experimental observations in identifying side chains critical for T cell recognition and residues responsible of MHC protein binding.  相似文献   

7.
1. The residue pair is considered as the fundamental unit which differentiates alpha-helix, beta-pleated sheet and the various turns and kink structures of the protein backbone. 2. The HPLG alphabet (Robson & Pain, 1974) is used to group pairs of residues, giving 16 possible conformational pairs, all of which are found with differing frequencies in the nine proteins examined. 3. The frequencies of occurrence of the 16 different types of turn or kink are analysed in relation to the constituent amino acids. Those containing the L or G conformation are of low frequency and are grouped for purposes of this analysis. 4. The distribution of amino acids within all the conformational pairs is non-random, with distinct preferences shown by certain residues. 5. All pairs containing an L or G conformation require the presence of a glycine or a proton-donor side chain. 6. The results are discussed in terms of the determination of these ;random' structures by local interactions.  相似文献   

8.
A suite of FORTRAN programs, PREF, is described for calculating preference functions from the data base of known protein structures and for comparing smoothed profiles of sequence-dependent preferences in proteins of unknown structure. Amino acid preferences for a secondary structure are considered as functions of a sequence environment. Sequence environment of amino acid residue in a protein is defined as an average over some physical, chemical, or statistical property of its primary structure neighbors. The frequency distribution of sequence environments in the data base of soluble protein structures is approximately normal for each amino acid type of known secondary conformation. An analytical expression for the dependence of preferences on sequence environment is obtained after each frequency distribution is replaced by corresponding Gaussian function. The preference for the α-helical conformation increases for each amino acid type with the increase of sequence environment of buried solvent-accessible surface areas. We show that a set of preference functions based on buried surface area is useful for predicting folding motifs in α-class proteins and in integral membrane proteins. The prediction accuracy for helical residues is 79% for 5 integral membrane proteins and 74% for 11 α-class soluble proteins. Most residues found in transmembrane segments of membrane proteins with known α-helical structure are predicted to be indeed in the helical conformation because of very high middle helix preferences. Both extramembrane and transmembrane helices in the photosynthetic reaction center M and L subunits are correctly predicted. We point out in the discussion that our method of conformational preference functions can identify what physical properties of the amino acids are important in the formation of particular secondary structure elements. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
We measured the frequency of side-chain rotamers in 14 alpha-helical and 16 beta-barrel membrane protein structures and found that the membrane environment considerably perturbs the rotamer frequencies compared to soluble proteins. Although there are limited experimental data, we found statistically significant changes in rotamer preferences depending on the residue environment. Rotamer distributions were influenced by whether the residues were lipid or protein facing, and whether the residues were found near the N- or C-terminus. Hydrogen-bonding interactions with the helical backbone perturbs the rotamer populations of Ser and His. Trp and Tyr favor side-chain conformations that allow their side chains to extend their polar atoms out of the membrane core, thereby aligning the side-chain polarity gradient with the polarity gradient of the membrane. Our results demonstrate how the membrane environment influences protein structures, providing information that will be useful in the structure prediction and design of transmembrane proteins.  相似文献   

10.
Enkephalin represents one of the bioactive peptide molecules most extensively investigated both in solution and in the crystal state. Depending upon the environment chosen for such studies, three main conformational states were identified for this flexible, linear pentapeptide—i.e., an extended conformation, a single-bend, and a double-bend structure. Since CD and Fourier transform ir (FTIR) spectra of Leu-enkephalin solubilized in negatively charged reverse micelles of bis (2-ethylhexyl)sulfosuccinate sodium salt/isooctane/water were supportive of a restricted conformational space of the aromatic side chains and of a bended type fold, we have analyzed by nmr the conformational preferences of Leu-enkephalin in reverse micelles using a synthetic [13C, 15N]-backbone-labeled sample. The overall conformation derived from nuclear Overhauser effect spectroscopy (NOESY) and 15N-filtered rotating frame NOESY (ROESY) spectra and by distance geometry calculations is a double-bend fold of the backbone that is comparable to one of the known x-ray structures. Thereby the tyrosine side chain is inserted into the hydrophobic core of the reverse micelles in a restrained conformational space as well evidenced by NOEs between the aromatic ring protons and the surfactant. The proximity of the aromatic rings of tyrosine and phenylalanine indicate a preferred structure consistent with the postulated conformation of the opioid peptide in the δ-receptor-bound state. These results confirm the interesting and promising properties of reverse micelles as membrane mimetica. © 1997 John Wiley & Sons, Inc. Biopoly 41: 591–606, 1997  相似文献   

11.
Turkey ovomucoid third domain (OMTKY3) is a canonical inhibitor of serine proteinases. Upon complex formation, the inhibitors fully exposed P1 residue becomes fully buried in the preformed cavity of the enzyme. All 20 P1 variants of OMTKY3 have been obtained by recombinant DNA technology and their equilibrium association constants have been measured with six serine proteinases. To rationalize the trends observed in this data set, high resolution crystal structures have been determined for OMTKY3 P1 variants in complex with the bacterial serine proteinase, Streptomyces griseus proteinase B (SGPB). Four high resolution complex structures are being reported in this paper; the three beta-branched variants, Ile18I, Val18I, and Thr18I, determined to 2.1, 1.6, and 1.7 A resolution, respectively, and the structure of the Ser18I variant complex, determined to 1.9 A resolution. Models of the Cys18I, Hse18I, and Ape18I variant complexes are also discussed. The beta-branched side chains are not complementary to the shape of the S1 binding pocket in SGPB, in contrast to that of the wild-type gamma-branched P1 residue for OMTKY3, Leu18I. Chi1 angles of approximately 40 degrees are imposed on the side chains of Ile18I, Val18I, and Thr18I within the S1 pocket. Dihedral angles of +60 degrees, -60 degrees, or 180 degrees are more commonly observed but 40 degrees is not unfavorable for the beta-branched side chains. Thr18I Ogamma1 also forms a hydrogen bond with Ser195 Ogamma in this orientation. The Ser18I side chain adopts two alternate conformations within the S1 pocket of SGPB, suggesting that the side chain is not stable in either conformation.  相似文献   

12.
《Inorganica chimica acta》2004,357(12):3588-3594
The Cambridge Structural Database (CSD) V. 5.23 has been searched for all the structures containing the fragment Pd{o-P-C6H4-CN-κ2N,P}. Bond lengths, bond angles and the conformations adopted by the PdPCCCN chelated ring have been studied statistically. It has been found Pd-P and Pd-N distances in the mentioned compounds are, respectively, shorter and longer than the mean value found for these parameters when the CSD was searched irrespective of the ligands. The conformation of the chelated ring has been characterized by means of two torsion angles, and can be described in most cases as a plane containing the P and carbon atoms with Pd and N atoms situated at the same side out of this plane. Molecular mechanics calculations have been employed to justify the conformational preferences found. The calculated strain energy suggests a path for the movement of Pd and N atoms from one side of the PCCC plane to the other through a planar conformation. MM calculations in complex (η3-allyl)-(N-(2-(diphenylphosphino)benzylidene)-4-methoxyphenylamine)-palladium(II) indicate that planar conformation is energetically accessible, and the extent of preorganization for the free ligand in this compound has been evaluated of 74%.  相似文献   

13.
The recent work is surveyed which leads to the suggestions that the conformation of globular proteins in solution corresponds to a dynamic ensemble of rapidly interconverting spatial structures, that clusters of hydrophobic amino acid side chains have an important role in the architecture of protein molecules, and that mechanistic aspects of protein denaturation can be correlated with internal mobility seen in the native conformation. These conclusions resulted originally from high resolution 1H nuclear magnetic resonance (NMR) studies of aromatic ring mobility, exchange of interior amide protons and thermal denaturation of the basic pancreatic trypsin inhibitor and a group of related proteins. Various new approaches to further characterize proteins in solution have now been taken and preliminary data are presented. These include computer graphics to outline hydrophobic clusters in globular protein structures, high resolution 1H-NMR experiments at variable hydrostatic pressure and 13C-NMR relaxation measurements. At the present early stage of these new investigations it appears that the hydrophobic cluster model for globular proteins is compatible with the data obtained.  相似文献   

14.
Takeuchi H 《Biopolymers》2003,72(5):305-317
The Raman spectrum of a protein contains a wealth of information on the structure and interaction of the protein. To extract the structural information from the Raman spectrum, it is necessary to identify and interpret the marker bands that reflect the structure and interaction in the protein. Recently, new Raman structural markers have been proposed for the tryptophan and histidine side chains by examining the spectra-structure correlations of model compounds. Raman structural markers are now available for the conformation, hydrogen bonding, hydrophobic interaction, and cation-pi interaction of the indole ring of Trp. For His, protonation, tautomerism, and metal coordination of the imidazole ring can be studied by using Raman markers. The high-resolution X-ray crystal structures of proteins provide the basis for testing and modifying the Raman structural markers of Trp and His. The structures derived from Raman spectra are generally consistent with the X-ray crystal structures, giving support for the applicability of most Raman structural makers. Possible modifications and limitations to some marker bands are also discussed.  相似文献   

15.
Quantum mechanical calculations are presented that predict that one-bond deuterium isotope effects on the 15N chemical shift of backbone amides of proteins, 1Δ15N(D), are sensitive to backbone conformation and hydrogen bonding. A quantitative empirical model for 1Δ15N(D) including the backbone dihedral angles, Φ and Ψ, and the hydrogen bonding geometry is presented for glycine and amino acid residues with aliphatic side chains. The effect of hydrogen bonding is rationalized in part as an electric-field effect on the first derivative of the nuclear shielding with respect to N–H bond length. Another contributing factor is the effect of increased anharmonicity of the N–H stretching vibrational state upon hydrogen bonding, which results in an altered N–H/N–D equilibrium bond length ratio. The N–H stretching anharmonicity contribution falls off with the cosine of the N–H···O bond angle. For residues with uncharged side chains a very good prediction of isotope effects can be made. Thus, for proteins with known secondary structures, 1Δ15N(D) can provide insights into hydrogen bonding geometries. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The total semi-empirical conformational analysis of the oxytocin molecule has been carried out. It has been revealed the two main types of stable structures of cyclic moiety backbone and the great lability of the tail. The optimal spacing of cyclic moiety side chains has been found for every backbone structure. The calculation results are in good agreement with the data of physico-chemical investigations. Among the set of stable molecule structures reported in the present study are structures with beta-turn conformation of the cyclic moiety backbone and without closer spacing of the cyclic moiety and the tail, as well as structures with closely spaced N- and C-terminal parts which, however, lack beta-turn in the cyclic moiety.  相似文献   

17.
Single-chain equilibrium conformation and dimerization of the three types of ionic EAK16 peptide are studied under three pH conditions using all-atom molecular dynamics simulations. It is found that both the single-chain conformation and the dimerization process of EAK16-IV are considerably different from those of the two other types, EAK16-I and EAK16-II. The value of pH is found to have a stronger effect on the single-chain conformation and dimerization of EAK16-IV. It is shown that in addition to the charge pattern on the peptide chains, the size of the side chains of the charged amino acids plays role in the conformation of the peptide chains and their dimerization. The results shed light on the pH-dependent self-assembly behavior of EAK16 peptide in the bulk solution, which has been reported in the literature.  相似文献   

18.
Calmodulin and other members of the EF-hand protein family are known to undergo major changes in conformation upon binding Ca(2+). However, some EF-hand proteins, such as calbindin D9k, bind Ca(2+) without a significant change in conformation. Here, we show the importance of a precise balance of solvation energetics to conformational change, using mutational analysis of partially buried polar groups in the N-terminal domain of calmodulin (N-cam). Several variants were characterized using fluorescence, circular dichroism, and NMR spectroscopy. Strikingly, the replacement of polar side chains glutamine and lysine at positions 41 and 75 with nonpolar side chains leads to dramatic enhancement of the stability of the Ca(2+)-free state, a corresponding decrease in Ca(2+)-binding affinity, and an apparent loss of ability to change conformation to the open form. The results suggest a paradigm for conformational change in which energetic strain is accumulated in one state in order to modulate the energetics of change to the alternative state.  相似文献   

19.
The intrinsic viscosity, sedimentation and diffusion of a series of branched, multichain poly-α-amino acids having a poly(L -lysine) backbone and poly(γ-benzyl L -glutamate) and poly (β-benzyl L -aspartate) side chains was studied at room temperature in dimethylformamide. The molecules were found to be extremely compact structures in which the molecular backbone is either lying along the major axis in a slightly twisted configuration (the longer the side chain the smaller the twist) or is coiled up in the form of a disk with backbone and side chains coplanar. Heat treatment (to 70°C.) introduces only small changes in the hydrodynamic parameters showing that the heat-labile aggregates detected by light scattering are reversibly broken up during the hydrodynamic measurements. The above structural information concerns the initial metastable conformation of the molecules which is irreversibly destroyed by heat treatment.  相似文献   

20.
Steiner RA  Kooter IM  Dijkstra BW 《Biochemistry》2002,41(25):7955-7962
The crystal structures of the copper-dependent Aspergillus japonicus quercetin 2,3-dioxygenase (2,3QD) complexed with the inhibitors diethyldithiocarbamate (DDC) and kojic acid (KOJ) are reported at 1.70 and 2.15 A resolution, respectively. Both inhibitors asymmetrically chelate the metal center and assume a common orientation in the active site cleft. Their molecular plane blocks access to the inner portion of the cavity which is lined by the side chains of residues Met51, Thr53, Phe75, Phe114, and Met123 and which is believed to bind the flavonol B-ring of the natural substrate. The binding of the inhibitors brings order into the mixed coordination observed in the native enzyme. DDC and KOJ induce a single conformation of the Glu73 side chain, although in different ways. In the presence of DDC, Glu73 is detached from the copper ion with its carboxylate moiety pointing away from the active site cavity. In contrast, when KOJ is bound, Glu73 ligates the Cu ion through its O(epsilon)(1) atom with a monodentate geometry. Compared to the native coordinating conformation, this conformation is approximately 90 degrees rotated about the chi(3) angle. This latter Glu73 conformation is compatible with the presence of a bound substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号