首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The B-subunit pentamer of Escherichia coli heat-labile enterotoxin (EtxB) is an exceptionally stable protein maintaining its quaternary structure over the pH value range 2.0-11.0. Up to 80% yields of reassembled pentamer can be obtained in vitro from material disassembled for very short incubation periods in KCl-HCl, pH 1.0. However, when the incubation period in acid is extended, the reassembly yield decreases to no more than 20% (Ruddock et al. (1996) J. Biol. Chem. 271 19118-19123). Here we demonstrate that the ion species present in the disassembly conditions strongly influence the reassembly competence of EtxB showing that 60% reassembly yields can be achieved, even after prolonged incubations, by the use of a phosphate buffer for acid disassembly. Using this system, we have fully characterized the disassembly and reassembly behavior of EtxB by electrophoretic, immunochemical, and spectroscopic techniques and compared it with that previously observed. Depending on the denaturation system used, the acid-denatured monomer is either in a predominantly reassembly-competent state (H(3)PO(4) system) or in a predominantly reassembly-incompetent conformation (KCl-HCl system). Interconversion between these two conformations in the denatured state is possible by the addition of salts to the denatured protein. The results are consistent with the previous hypothesis that the conversion between reassembly-competent and -incompetent states corresponds to a cis/trans isomerization of a peptide bond, presumably that to Pro93.  相似文献   

2.
3.
4.
5.
6.
Cellular location of heat-labile enterotoxin in Escherichia coli.   总被引:16,自引:6,他引:10       下载免费PDF全文
We demonstrated that both the A and B subunits of heat-labile enterotoxin from Escherichia coli are located in the periplasm. The toxin was shown to form aggregates in Tris-EDTA buffers which are routinely used for isolating membranes. The aggregates pellet upon centrifugation, and this may explain why several previous investigators have concluded that enterotoxin is associated with membranes.  相似文献   

7.
Release of heat-labile enterotoxin subunits by Escherichia coli.   总被引:3,自引:2,他引:1       下载免费PDF全文
Most of the heat-labile enterotoxin (LT) synthesized by Escherichia coli is cell associated; however, a small portion of LT (approximately 10%) is released by bacterial cells into the culture supernatant. The LT subunit B (LT-B) produced by a cloned LT-B gene (tox B) was released in amounts equal to the parent LT release. In contrast, no release of LT subunit A (LT-A) or its smaller derivatives was observed in strains containing cloned toxA genes. The data suggest that LT-B is necessary for the release of LT-A across the bacterial membrane.  相似文献   

8.
From the Escherichia coli strain isolated from a patient suffering from diarrhoea a homogenate and concentrated culture filtrate were prepared. From these materials the heat-labile enterotoxin was isolated after its elution with 0.2 M D-galactose from Sepharose 6B column. The obtained enterotoxin was positive in the rabbit ileal loop test up to a concentration of 1 microgram protein/ml. In the immunodiffusion test it reacted in a concentration up to 5 micrograms protein/ml with anticholeragen and in a concentration up to 30 micrograms protein/ml with its specific antiserum. This antiserum was prepared by intramuscular immunization of rabbits by enterotoxin with complete Freund's adjuvant.  相似文献   

9.
Abstract The hemagglutinating activity of the heat-labile enterotoxin (LTp) isolated from porcine enterotoxigenic Escherichia coli was studied by hemagglutination inhibition. The hemagglutinating activity of LTp was enhanced 64–512-fold with pronase- and neuraminidase-treated human erythrocytes although both intact human and sheep erythrocytes were not agglutinated by LTp at the highest concentration used. No enhancement was found in hemagglutination of neuraminidase-treated sheep erythrocytes by LTp. Hemagglutination of pronase-treated human type A erythrocytes induced by LTp was inhibited by melibiose and galactose among mono-, di-, and polysaccharides used as inhibitors. Galactose was a slightly better inhibitor than melibiose. These findings suggest that LTp is a bacterial lectin specific for galactose.  相似文献   

10.
目的将大肠埃希菌热不稳定肠毒素B亚单位(LTB)克隆到表达载体pBV220,使LTB基因在大肠埃希菌和双歧杆菌中稳定表达。方法将LTB基因克隆到表达载体pBV220中,再分别转化大肠埃希菌DH5a和婴儿双歧杆菌,使之表达,表达产物用SDS—PAGE鉴定。并通过家兔肠袢实验验证表达蛋白的安全性。结果LTB基因在大肠埃希菌和双歧杆菌中均可稳定表达,毒性实验证明LTB保留轻微的毒性。结论稳定表达LTB的双歧杆菌为今后的口服疫苗佐剂奠定了基础。  相似文献   

11.
We report the complete DNA sequence of the Escherichia coli elt A gene, which codes for the A subunit of the heat-labile enterotoxin, LT. The amino acid sequence of the LT A subunit has been deduced from the DNA sequence of elt A. The LT A subunit starts with methionine, ends with leucine, and comprises 254 amino acids. The computed molecular weight of LT A is 29,673. The A subunit of cholera toxin (CT A) has been shown to be structurally and functionally related to the LT A subunit. Comparison of the primary structure of LT A with the known partial amino acid sequence of CT A indicates that the 2 polypeptides share considerable homology throughout their sequences. The NH2-terminal regions exhibit the highest degree of homology (91%), while the COOH-terminal region, containing the sole cystine residue in each toxin is less conserved (approximately 52%). Alignment of homologous residues in the COOH-terminal regions of LT A and CT A indicates that a likely site for proteolytic cleavage of LT A is after Arg residue 188. The resulting A2 polypeptide would be 46 amino acids long, would contain a single cysteine residue, and have Mr = 5261. The elt A nucleotide sequence further predicts that the LT A protein is synthesized in a precursor form, possessing an 18-amino acid signal sequence at its NH2 terminus.  相似文献   

12.
We determined the complete nucleotide sequence of the toxB gene (375 base pairs in length), which encodes the B subunit of heat-labile enterotoxin produced from Escherichia coli pathogenic for humans (hLT). The amino acid sequence of the B subunit of hLT was deduced from the nucleotide sequence. Consequently, it has become possible to study the homology between the B subunits of three similar toxins: hLT, LT produced from E. coli pathogenic for piglets (pLT), and cholera toxin (the latter two sequences have been reported by others). The three B subunits are all 103 amino acids in length. A comparison of the toxB gene and the eltB gene, which encodes the B subunit of pLT, showed a 98% homology at the nucleotide level and a 95% homology at the amino acid (of a precursor) level, indicating the possibility that the two genes share a common ancestor. With respect to the B-subunit sequences, the homologies between hLT and pLT, between hLT and cholera toxin, and between pLT and cholera toxin were 96, 81, and 79%, respectively. Several large common sequences are conserved by the three peptides. In contrast, no sequences are present in both pLT and cholera toxin but missing in hLT.  相似文献   

13.
Escherichia coli heat-labile enterotoxin (labile toxin, LT) catalyzed the hydrolysis of NAD to ADP-ribose and nicotinamide and the ADP-ribosylation of arginine (Moss, J., and Richardson, S.H. (1978) J. Clin. Invest. 62, 281-285). Analysis of the product of the ADP-ribosylation of arginine by nuclear magnetic resonance spectroscopy indicated that the reaction was stereospecific and resulted in the formation of alpha-ADP-ribosyl-L-arginine. This reaction product rapidly anomerized to yield a mixture of the alpha and beta forms. In the presence of [adenine-U-14C]NAD, E. coli enterotoxin catalyzed the transfer of the radiolabel to proteins; the ADP-ribosylation of proteins was inhibited by arginine methyl ester, an alternative substrate. Digestion of the 14C-protein with snake venom phosphodiesterase released predominantly 5'-AMP. No product was obtained with a mobility similar to that of 2'-(5'-phosphoribosyl)-5'-AMP. This result is consistent with the covalent attachment by the enterotoxin of ADP-ribose rather than poly(ADP-ribose) to protein. Thus, LT is catalytically equivalent to choleragen, an enterotoxin of Vibrio cholerae, and activates adenylate cyclase through a similar stereospecific ADP-ribosylation reaction.  相似文献   

14.
Abstract The heat-labile enterotoxin (LTc) isolated from chicken enterotoxigenic Escherichia coli was purified to homogeneity and its molecular and antigenic properties were compared with those of purified LTs from porcine and human enterotoxigenic Escherichia coli (LTp, LTh). The A subunit of LTc was identical to that of LTp and the B subunit of LTc was identical to that of LTh but not that of LTp, in mobility on SDS-polyacrylamide gel electrophoresis. Ouchterlony tests demonstrated that LTc is antigenically identical to LTh but not with LTp. The p I point and amino acid composition of LTc were also compared and the results suggest that chicken enterotoxigenic E. coli produced an LT similar to LTh.  相似文献   

15.
Cholera and the related Escherichia coli-associated diarrheal disease are important problems confronting Third World nations and any area where water supplies can become contaminated. The disease is extremely debilitating and may be fatal in the absence of treatment. Symptoms are caused by the action of cholera toxin, secreted by the bacterium Vibrio cholerae, or by a closely related heat-labile enterotoxin, produced by Escherichia coli, that causes a milder, more common traveler's diarrhea. Both toxins bind receptors in intestinal epithelial cells and insert an enzymatic subunit that modifies a G protein associated with the adenylate cyclase complex. The consequent stimulated production of cyclic AMP, or other factors such as increased synthesis of prostaglandins by intoxicated cells, initiates a metabolic cascade that results in the excessive secretion of fluid and electrolytes characteristic of the disease. The toxins have a very high degree of structural and functional homology and may be evolutionarily related. Several effective new vaccine formulations have been developed and tested, and a growing family of endogenous cofactors is being discovered in eukaryotic cells. The recent elucidation of the three-dimensional structure of the heat-labile enterotoxin has provided an opportunity to examine and compare the correlations between structure and function of the two toxins. This information may improve our understanding of the disease process itself, as well as illuminate the role of the toxin in studies of signal transduction and G-protein function.  相似文献   

16.
Heat-labile enterotoxin of Escherichia coli pathogenic for humans (LTh) or for piglets (LTp) and Vibrio cholerae enterotoxin (CT) are structurally and functionally similar toxins. We have determined the complete nucleotide sequence of the toxA gene which encodes the subunit A of LTh (LTh A). The deduced amino acid sequence consists of 258 residues including a signal peptide of 18 residues. According to the previously completed LTh B sequence (103 residues), the predicted holotoxin (1A5B) of LTh comprises 755 residues and has Mr = 87,866. With respect to LTh A and LTh B, secondary structures, local hydrophilicity, and sites for antigenic determinants were predicted. Both codon usage and G + C content of the toxA gene and the LTh B gene (toxB) were markedly different from those observed with several E. coli chromosomal genes. Its relatively low G + C content was rather close to that of the V. cholerae chromosome. Although the toxA gene shares a common ancestor with the LTp A gene (eltA), the two genes are apparently distinguishable from each other in their sequences. Like LTh B reported previously, the predicted sequence of the catalytic fragment LTh A1 also showed more homology to that of CT A1 than did that of LTp A1. In contrast, unique sequences were found in LTh A2.  相似文献   

17.
Chloroplast transformation systems offer unique advantages in biotechnology, including high level of foreign gene expression, maternal inheritance, and polycistronic expression. We studied chloroplast expression of LTK63 (change Ser-->Lys at position 63 in the A subunit) which is the mutant of Escherichia coli heat-labile toxin. LTK63 is devoid of any toxic activity, but still retains its mucosal adjuvanticity. The LTK63 was cloned into chloroplast targeting vector and transformed to tobacco chloroplasts by particle bombardment. PCR and Southern blot analyses confirmed stable homologous recombination of the LTK63 gene into the chloroplast genome. The amount of LTK63 protein detected in tobacco chloroplasts was approximately 3.7% of the total soluble protein. The GM1-ganglioside binding assay confirmed that chloroplast-synthesized LTB of LTK63 binds to the intestinal membrane GM1-ganglioside receptor. Thus, the expression of LTK63 in chloroplasts provides a potential route toward the development of a plant-based edible vaccine for high expression system and environmentally friendly approach.  相似文献   

18.
19.
The genes for a new enterotoxin were cloned from Escherichia coli SA53. The new toxin was heat labile and activated adenylate cyclase but was not neutralized by antisera against cholera toxin or E. coli heat-labile enterotoxin. Subcloning and minicell experiments indicated that the toxin is composed of two polypeptide subunits that are encoded by two genes. The two toxin subunits exhibited mobilities on polyacrylamide gels that are similar to those of cholera toxin and E. coli heat-labile enterotoxin subunits. A 0.8-kilobase DNA probe for the new enterotoxin failed to hybridize with the cloned structural genes for E. coli heat-labile enterotoxin.  相似文献   

20.
In vitro mutagenesis of the LTA gene, encoding the A subunit of the Escherichia coli heat-labile enterotoxin, has been used to obtain A subunits deficient in enzymic activity. One inactive A-subunit mutant which contained two amino acid substitutions, was shown to associate with native B subunits to form a holotoxoid lacking toxin activity. A serine to phenylalanine mutation appears to be responsible for the loss of toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号