首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control.  相似文献   

3.
Sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN) in many lepidopteran species. We cloned a PBAN receptor (Plx-PBANr) gene from the female pheromone gland of the diamondback moth, Plutella xylostella (L.). Plx-PBANr encodes 338 amino acids and has conserved structural motifs implicating in promoting G protein coupling and tyrosine-based sorting signaling along with seven transmembrane domains, indicating a typical G protein-coupled receptor. The expression of Plx-PBANr was found only in the pheromone gland of female adults among examined tissues and developmental stages. Heterologous expression in human uterus cervical cancer cells revealed that Plx-PBANr induced significant calcium elevation when challenged with Plx-PBAN. Female P. xylostella injected with double-stranded RNA specific to Plx-PBANr showed suppression of the receptor gene expression and exhibited significant reduction in pheromone biosynthesis, which resulted in loss of male attractiveness. Taken together, the identified PBAN receptor is functional in PBAN signaling via calcium secondary messenger, which leads to activation of pheromone biosynthesis and male attraction.  相似文献   

4.
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell, occupying the highest hierarchical positions in the regulation of many physiological processes. Although they have been extensively studied in a number of model insects, there have been few investigations of GPCRs in large Lepidopterans, such as Bombyx mori, an organism that provides a means to perform detailed tissue expression analyses, which may help to characterize GPCRs and their ligands. In addition, B. mori, also known as the silkworm, is an insect of substantial economic importance, due to its use in silk production and traditional medicines. In this work, we computationally identified 90 putative GPCRs in B. mori, 33 of which represent novel proteins. These GPCRs were annotated and compared with their homologs in Drosophila melanogaster and Anopheles gambiae. Phylogenetics analyses of the GPCRs from these three insects showed that GPCRs may easily duplicate or disappear during insect evolution, especially in the neuropeptide and protein hormone receptor subfamily. Interestingly, we observed a decrease in the quantity and diversity of the stress-tolerance gene, Methuselah, in B. mori, which may be related to its long history of domestication. Moreover, the presence of many Bombyx-specific GPCRs suggests that neither Drosophila nor Anopheles is good representatives for the GPCRs in the Class Insecta.  相似文献   

5.
There is an on-going need for the discovery and development of new pesticides due to the loss of existing products through the continuing development of resistance, the desire for products with more favourable environmental and toxicological profiles and the need to implement the principles of integrated pest management.Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behaviour, including reproduction, osmoregulation, growth and development. Modifying normal receptor function by blocking or over stimulating its actions may either result in the death of a pest or disrupt its normal fitness or reproductive capacity to reduce pest populations. Hence GPCRs offer potential targets for the development of next generation pesticides providing opportunities to discover new chemistries for invertebrate pest control. Such receptors are important targets for pharmaceutical drugs, but are under-exploited by the agro-chemical industry. The octopamine receptor agonists are the only pesticides with a recognized mode of action, as described in the classification scheme developed by the Insecticide Resistance Action Committee, that act via a GPCR.The availability of sequenced insect genomes has facilitated the characterization of insect GPCRs, but the development and utilization of screening assays to identify lead compounds has been slow. Various studies using knock-down technologies or applying the native ligands and/or neuropeptide analogues to pest insects in vivo, have however demonstrated that modifying normal receptor function can have an insecticidal effect.This review presents examples of potential insect neuropeptide receptors that are potential targets for lead compound development, using case studies from three representative pest species, Tribolium castaneum, Acyrthosiphon pisum, and Drosophila suzukii.Functional analysis studies on T. castaneum suggest that GPCRs involved in growth and development (eclosion hormone, ecdysis triggering hormone and crustacean cardioacceleratory peptide receptors) as well as the dopamine-2 like, latrophilin-like, starry night, frizzled-like, methuselah-like and the smoothened receptors may be suitable pesticide targets.From in vivo studies using native ligands and peptide analogues, receptors which appear to have a role in the regulation of feeding in the pea aphid, such as the PISCF-allatostatin and the various “kinin” receptors, are also potential targets.In Drosophila melanogaster various neuropeptides and their signalling pathways have been studied extensively. This may provide insights into potential pesticide targets that could be exploited in D. suzukii. Examples include the sex peptide receptor, which is involved in reproduction and host seeking behaviours, and those responsible for osmoregulation such as the diuretic hormone receptors.However the neuropeptides and their receptors in insects are often poorly characterized, especially in pest species. Although data from closely related species may be transferable (e.g. D. melanogaster to D. suzukii), peptides and receptors may have different roles in different insects, and hence a target in one insect may not be appropriate in another. Hence fundamental knowledge of the roles and functions of receptors is vital for development to proceed.  相似文献   

6.
Pheromone biosynthesis-activating neuropeptide (PBAN) is a peptide used by a variety of moths to regulate pheromone production. Pyrokinins are peptides that activate muscle contraction in a variety of insects. These peptides have a common FXPRLamide C-terminal ending that is required for activity. Receptors have been identified from a moth and Drosophila as belonging to the rhodopsin family of G-protein coupled receptors (GPCRs) with sequence similarity to neuromedin U receptors from vertebrates. No insect GPCR has been characterized with regard to role of extracellular domains required for peptide binding and receptor activation. To begin characterizing these GPCRs we created chimera receptors using a PBAN-receptor from a moth and pyrokinin-receptors from Drosophila where extracellular domains were swapped. The N-terminal of the moth GPCR has two N-glycosylation sites that when replaced with glutamines, activity was reduced but not absent, indicating these sites contribute to receptor stability. Activity was greatly reduced by replacing the 2nd extracellular loop that has an N-glycosylation site and a cysteine that can form a disulfide bridge with a cysteine at the beginning of the 3rd transmembrane domain. Exchange of the 3rd extracellular loop between the moth and Drosophila receptor resulted in differential activation by PBAN or a diapause hormone peptide. This result indicates that the 3rd extracellular loop is directly involved in peptide ligand recognition. Results are discussed in context of the structural features of insect GPCRs that are required for receptor activation as compared to vertebrate receptors.  相似文献   

7.
Kisspeptin receptor (Kiss1R) is an important receptor that plays central regulatory roles in reproduction by regulating hormone release in the hypothalamus. We hypothesize that the formation of heterocomplexes between Kiss1R and other hypothalamus G protein-coupled receptors (GPCRs) affects their cellular signaling. Through screening of potential interactions between Kiss1R and hypothalamus GPCRs, we identified G protein-coupled estrogen receptor (GPER) as one interaction partner of Kiss1R. Based on the recognised function of kisspeptin and estrogen in regulating the reproductive system, we investigated the Kiss1R/GPER heterocomplex in more detail and revealed that complex formation significantly reduced Kiss1R-mediated signaling. GPER did not directly antagonize Kiss1R conformational changes upon ligand binding, but it rather reduced the cell surface expression of Kiss1R. These results therefore demonstrate a regulatory mechanism of hypothalamic hormone receptors via receptor cooperation in the reproductive system and modulation of receptor sensitivity.  相似文献   

8.
Most neuropeptide and protein hormone receptors belong to the large superfamily of G-protein-coupled receptors (GPCRs). These cell membrane proteins steer many important processes such as development, reproduction, homeostasis and behaviour when activated by their corresponding ligands. The first insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships.  相似文献   

9.
Moth sex-pheromone biosynthesis follows a circadian cycle, which is cued by the release of the neurohormone pheromone biosynthesis activating neuropeptide (PBAN) to the hemolymph. PBAN binds to a G protein-coupled receptor (GPCR), in pheromone glands, (PG) initially identified by us in Helicoverpa zea moths (HezPBAN-R). In this study, the sequences of the seven transmembrane helices of HezPBAN-R were identified, built, packed and oriented correctly after multiple sequence alignment of the HezPBAN-R and several other GPCRs using the X-ray structure of rhodopsin as a template. Molecular dynamics simulations were run on three different beta-turn types of the C-terminal hexapeptide of PBAN and the results clustered into 12 structurally distinct groups. The lowest energy conformation from each group was used for computer-simulated docking with the model of the HezPBAN-R. Highest scoring complexes were examined and putative binding sites were identified. Experimental studies, using in vitro PG, revealed lower levels of pheromonotropic activity when challenged with pyrokinin-like peptides than with HezPBAN as ligand. Thus, the Drosophila melanogaster pyrokinin-1 receptor (CG9918) was chosen to create chimera receptors by exchanging between the three extracellular loops of the HezPBAN-R and the CG9918 for in silico mutagenesis experiments. The predicted docking model was validated with experimental data obtained from expressed chimera receptors in Sf9 cells.  相似文献   

10.
G protein–coupled receptor (GPCR) signaling is fundamental to physiological processes such as vision, the immune response, and wound healing. In the budding yeast Saccharomyces cerevisiae, GPCRs detect and respond to gradients of pheromone during mating. After pheromone stimulation, the GPCR Ste2 is removed from the cell membrane, and new receptors are delivered to the growing edge. The regulator of G protein signaling (RGS) protein Sst2 acts by accelerating GTP hydrolysis and facilitating pathway desensitization. Sst2 is also known to interact with the receptor Ste2. Here we show that Sst2 is required for proper receptor recovery at the growing edge of pheromone-stimulated cells. Mathematical modeling suggested pheromone-induced synthesis of Sst2 together with its interaction with the receptor function to reestablish a receptor pool at the site of polarized growth. To validate the model, we used targeted genetic perturbations to selectively disrupt key properties of Sst2 and its induction by pheromone. Together our results reveal that a regulator of G protein signaling can also regulate the G protein–coupled receptor. Whereas Sst2 negatively regulates G protein signaling, it acts in a positive manner to promote receptor retention at the growing edge.  相似文献   

11.
Most sexually reproducing organisms have the ability to recognize individuals of the same species. In ascomycete fungi including yeasts, mating between cells of opposite mating type depends on the molecular recognition of two peptidyl mating pheromones by their corresponding G-protein coupled receptors (GPCRs). Although such pheromone/receptor systems are likely to function in both mate choice and prezygotic isolation, very few studies have focused on the stringency of pheromone receptors. The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M). Here, we investigated the stringency of the two GPCRs, Mam2 and Map3, for their respective pheromones, P-factor and M-factor, in fission yeast. First, we switched GPCRs between S. pombe and the closely related species Schizosaccharomyces octosporus, which showed that SoMam2 (Mam2 of S. octosporus) is partially functional in S. pombe, whereas SoMap3 (Map3 of S. octosporus) is not interchangeable. Next, we swapped individual domains of Mam2 and Map3 with the respective domains in SoMam2 and SoMap3, which revealed differences between the receptors both in the intracellular regions that regulate the downstream signaling of pheromones and in the activation by the pheromone. In particular, we demonstrated that two amino acid residues of Map3, F214 and F215, are key residues important for discrimination of closely related M-factors. Thus, the differences in these two GPCRs might reflect the significantly distinct stringency/flexibility of their respective pheromone/receptor systems; nevertheless, species-specific pheromone recognition remains incomplete.  相似文献   

12.
The α-mating pheromone receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae is a G protein-coupled receptor (GPCR) that is homologous to the large family of GPCRs that mediate multiple types of signal transduction in mammals. We have screened libraries of mutant receptors to identify dominant negative alleles that are capable of interfering with the function of a co-expressed normal receptor. Two dominant negative alleles have been recovered in this manner. In addition, we find that previously isolated loss-of-function mutations in the α-factor receptor exhibit dominant negative effects. Detection of the dominant effects requires high-level expression of the mutant receptors but does not require a high ratio of mutant to normal receptors. Cellular levels of the normal receptors are not affected by co-expression of the dominant negative alleles. Expression of the mutant receptors does not interfere with constitutive signaling in a strain that lacks the G protein α subunit encoded by GPA1, indicating that interference with signaling occurs at the level of the receptor or the interacting G protein. Expression of increased levels of G protein subunits partially reverses the dominant negative effects. The dominant negative behavior of the mutant receptors is diminished by deletion of the SST2 gene, which encodes an RGS (Regulator of G protein Signaling) protein involved in desensitization of pheromone signaling. The most likely explanation for the dominant negative effects of the mutations appears to be the existence of an interaction between unactivated receptors and the trimeric G protein that titrates the G protein away from the normal receptors or renders the G protein insensitive to receptor activation. This interaction appears to be mediated by the SST2 gene product.  相似文献   

13.
Pheromone biosynthesis-activating neuropeptide (PBAN) and pyrokinins belong to a family of insect peptide hormones that have a common FXPRLamide C-terminal ending. The G-protein-coupled receptors (GPCRs) for this peptide family were first identified from a moth and Drosophila with sequence similarity to neuromedin U receptors from vertebrates. We have characterized the PBAN-receptor (PBAN-R or PR) active binding domains using chimeric GPCRs and proposed that extracellular loop 3 is critical for ligand selection. Here, we characterized the 3rd extracellular domain of PBAN-R through site-directed point mutations. Results are discussed in context of the structural features required for receptor activation using receptor activation experiments and in silico computational modeling. This research will help in characterizing these receptors towards a goal of finding agonists and/or antagonists for PBAN/pyrokinin receptors.  相似文献   

14.
There are many orphan G protein-coupled receptors (GPCRs), for which ligands have not yet been identified, in both vertebrates and invertebrates, such as Drosophila melanogaster. Identification of their cognate ligands is critical for understanding the function and regulation of such GPCRs. Indeed, the discovery of bioactive peptides that bind GPCRs has enhanced our understanding of mechanisms underlying many physiological processes. Here, we identified an endogenous ligand of the Drosophila orphan GPCR, CG34381. The purified ligand is a peptide comprised of 28 amino acids with three intrachain disulfide bonds. The preprotein is coded for by gene CG14871. We designated the cysteine-rich peptide “trissin” (it means for triple S–S bonds) and characterized the structure of intrachain disulfide bonds formation in a synthetic trissin peptide. Because the expression of trissin and its receptor is reported to predominantly localize to the brain and thoracicoabdominal ganglion, trissin is expected to behave as a neuropeptide. The discovery of trissin provides an important lead to aid our understanding of cysteine-rich peptides and their functional interaction with GPCRs.  相似文献   

15.
Species‐specific pheromone blends of nocturnal female moths, derived from fatty acid precursors, are produced and released for mate‐finding, and are initiated by the circadian, trophic hormone, Pheromone Biosynthesis Activating Neuropeptide (PBAN). PBAN, produced in the sub‐oesophageal ganglion, is a 33 amino acid neuropeptide with a minimum active core in its FXPRLamide C‐terminal. PBAN acts directly on pheromone gland cells of mature females by binding to a specific G‐protein‐coupled membrane receptor (GPCR), and thereby initiating a signal transduction cascade involving calcium and cAMP. This discussion will review recent developments concerning the identification of the PBAN GPCR, its regulation by juvenile hormone (JH), and its mode of action at the level of the pheromone biosynthetic pathway. The discussion will also include recent developments concerning events occurring as a result of the transfer of pheromonostatic compounds of male origin after mating.  相似文献   

16.
G protein-coupled receptors (GPCRs) can stimulate the mitogen-activated protein kinase (MAPK) cascade and thereby induce cellular proliferation like receptor tyrosine kinases (RTKs). Work over the past 5 years has established several models which reduce the links of G(i)-, G(q)-, and G(s)-coupled receptors to MAPK on few principle pathways. They include (i) Ras-dependent activation of MAPK via transactivation of RTKs such as the epidermal growth factor receptor (EGFR), (ii) Ras-independent MAPK activation via protein kinase C (PKC) that converges with the RTK signalling at the level of Raf, and (iii) activation as well as inactivation of MAPK via the cAMP/protein kinase A (PKA) pathway in dependency on the type of Raf. Most of these generalizing hypotheses are founded on experimental data obtained from expression studies and using a limited set of individual receptors. This review will compare these models with pathways to MAPK found for a great variety of peptide hormone and neuropeptide receptor subtypes in various cells. It becomes evident that under endogenous conditions, the transactivation pathway is less dominant as postulated, whereas pathways involving isoforms of PKC and, especially, phosphoinositide 3-kinase (PI-3K) appear to play a more important role as assumed so far. Highly cell-specific and unusual connections of signalling proteins towards MAPK, in particular tumour cells, might provide points of attacks for new therapeutic concepts.  相似文献   

17.
Protein-protein interactions define specificity in signal transduction and these interactions are central to transmembrane signaling by G-protein-coupled receptors (GPCRs). It is not quite clear, however, whether GPCRs and the regulatory trimeric G-proteins behave as freely and independently diffusible molecules in the plasma membrane or whether they form some preassociated complexes. Here we used clear-native polyacrylamide gel electrophoresis (CN-PAGE) to investigate the presumed coupling between thyrotropin-releasing hormone (TRH) receptor and its cognate G(q/11) protein in HEK293 cells expressing high levels of these proteins. Under different solubilization conditions, the TRH receptor (TRH-R) was identified to form a putative pentameric complex composed of TRH-R homodimer and G(q/11) protein. The presumed association of TRH-R with G(q/11)α or Gβ proteins in plasma membranes was verified by RNAi experiments. After 10- or 30-min hormone treatment, TRH-R signaling complexes gradually dissociated with a concomitant release of receptor homodimers. These observations support the model in which GPCRs can be coupled to trimeric G-proteins in preassembled signaling complexes, which might be dynamically regulated upon receptor activation. The precoupling of receptors with their cognate G-proteins can contribute to faster G-protein activation and subsequent signal transfer into the cell interior.  相似文献   

18.
19.
Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic of pheromone receptors. In the Xenopus-based functional study and in situ hybridization, PxylOR4 is defined as another pheromone receptor in addition to the previously characterized PxylOR1. In the study of interaction between PRs and PBPs, PxylPBPs could increase the sensitivity of the complex expressing oocyte cells to the ligand pheromone component while decreasing the sensitivity to pheromone analogs. We deduce that activating pheromone receptors in olfactory receptor neurons requires some role of PBPs to pheromone/PBP complex. If the chemical signal is not the pheromone component, but instead, a pheromone analog with a similar structure, the complex would have a decreased ability to activate downstream pheromone receptors.  相似文献   

20.
G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the β1 and β2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号