首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Killing of Escherichia coli by hydrogen peroxide proceeds by two modes. Mode one killing appears to be due to DNA damage, has a maximum near 1 to 3 mM H2O2, and requires active metabolism during exposure. Mode two killing is due to uncharacterized damage, occurs in the absence of metabolism, and exhibits a classical multiple-order dose-response curve up to at least 50 mM H2O2 (J. A. Imlay and S. Linn, J. Bacteriol. 166:519-527, 1986). H2O2 induces the SOS response in proportion to the degree of killing by the mode one pathway, i.e., induction is maximal after exposure to 1 to 3 mM H2O2. Mutant strains that cannot induce the SOS regulon are hypersensitive to peroxide. Analysis of the sensitivities of mutants that are deficient in individual SOS-regulated functions suggested that the SOS-mediated protection is due to the enhanced synthesis of recA protein, which is rate limiting for recombinational DNA repair. Specifically, strains wholly blocked in both SOS induction and DNA recombination were no more sensitive than mutants that are blocked in only one of these two functions, and strains carrying mutations in uvrA, -B, -C, or -D, sfiA, umuC or -D, ssb, or dinA, -B, -D, -F, -G, -H, -I, or -J were not abnormally sensitive to killing by H2O2. After exposure to H2O2, mutagenesis and filamentation also occurred with the dose response characteristic of SOS induction and mode one killing, but these responses were not dependent on the lexA-regulated umuC mutagenesis or sfiA filamentation functions, respectively. Exposure of E. coli to H2O2 also resulted in the induction of functions under control of the oxyR regulon that enhance the scavenging of active oxygen species, thereby reducing the sensitivity to H2O2. Catalase levels increased 10-fold during this induction, and katE katG mutants, which totally lack catalase, while not abnormally sensitive to killing by H2O2 in the naive state, did not exhibit the induced protective response. Protection equal to that observed during oxyR induction could be achieved by the addition of catalase to cultures of naive cells in an amount equivalent to that induced by the oxyR response. Thus, the induction of catalase is necessary and sufficient for the observed oxyR-directed resistance to killing by H2O2. Although superoxide dismutase appeared to be uninvolved in this enhanced protective response, sodA sodB mutants, which totally lack superoxide dismutase, were especially sensitive to mode one killing by H2O2 in the naive state. gshB mutants, which lack glutathione, were not abnormally sensitive to killing by H2O2.  相似文献   

2.
Wild-type cells and six DNA repair-deficient mutants (lexA, recA, recB, recA, recB, polA1, and uvrA) of Escherichia coli K-12 were treated with near-ultraviolet radiation plus hydrogen peroxide (H2O2). At low H2O2 concentrations (6 X 10(-6) to 6 X 10(-4) M), synergistic killing occurred in all strains except those containing a mutation in recA. This RecA-repairable damage was absent from stationary-phase cells but increased in logarithmic cells as a function of growth rate. At higher H2O2 concentrations (above 6 X 10(-4) M) plus near-ultraviolet radiation, all strains, including those with a mutation in recA, were synergistically killed; thus, at high H2O2 concentrations, the damage was not RecA repairable.  相似文献   

3.
The cytotoxicity of hydrogen peroxide in Escherichia coli was investigated after various conditions of drug exposure. Two modes of killing were detected following a 15-min challenge with H2O2 under either aerated or anoxic conditions. Mode one killing occurred at levels below 2.5 mM and mode two killing at concentrations higher than 10 mM. Whereas mode one killing was similar at the two conditions of drug exposure, mode two lethality differed in that aerated cells were more sensitive than anoxic cells. Independently of O2 tension the hydroxyl radical scavenger, thiourea, prevented mode two but not mode one killing by H2O2. Cells treated with the drug at ice temperature did not display mode one killing and mode two lethality occurred only at very high concentrations. We suggest that hydroxyl radicals mediate mode two but not mode one killing by H2O2.  相似文献   

4.
A cross-adaptive response (CAR), defined as a reduction of the effects of an agent by pretreatment with another agent, was demonstrated when E. coli WP2 cells were pretreated with hydrogen peroxide (H2O2) followed by challenging treatment with aldehyde compounds. Pretreatment with a sublethal dose (60 microM) of H2O2 for 30 min made WP2 cells resistant to the killing effects of formaldehyde (FA), and 4 other mutagenic aldehydes: glutaraldehyde, glyoxal, methyl glyoxal and chloroacetaldehyde. CAR was also observed in WP2uvrA (uvrA-) and ZA12 (umuC-) cells, but not in ZA60 (recA-) and CM561 (lexA- (Ind-] cells. A role of recA and lexA in CAR was further suggested by the lack of beta-galactosidase induction in recA- and lexA- cells by H2O2. CAR and beta-galactosidase induction, however, were found to be separate events since CAR was recovered by introducing the recA+ gene into lexA- cells, but no induction of beta-galactosidase by H2O2 was observed in cells with the same gene transfer. These results suggest that H2O2 has the capacity to induce a function which reduces the killing effects of aldehydes, and the function is controlled by the recA gene without involvement of SOS response.  相似文献   

5.
We have investigated the mechanisms of killing of Escherichia coli by HOCl by identifying protective functions. HOCl challenges were performed on cultures arrested in stationary phase and in exponential phase. Resistance to HOCl in both cases was largely mediated by genes involved in resistance to hydrogen peroxide (H2O2). In stationary phase, a mutation in rpoS, which controls the expression of starvation genes including those which protect against oxidative stress, renders the cells hypersensitive to killing by HOCl. RpoS-regulated genes responsible for this sensitivity were dps, which encodes a DNA-binding protein, and, to a lesser extent, katE and katG, encoding catalases; all three are involved in resistance to H2O2. In exponential phase, induction of the oxyR regulon, an adaptive response to H2O2, protected against HOCl exposure, and the oxyR2 constitutive mutant is more resistant than the wild-type strain. The genes involved in this oxyR-dependent resistance have not yet been identified, but they differ from those primarily involved in resistance to H2O2, including katG, ahp, and dps. Pretreatment with HOCl conferred resistance to H2O2 in an OxyR-independent manner, suggesting a specific adaptive response to HOCl. fur mutants, which have an intracellular iron overload, were more sensitive to HOCl, supporting the generation of hydroxyl radicals upon HOCl exposure via a Fenton-type reaction. Mutations in recombinational repair genes (recA or recB) increased sensitivity to HOCl, indicative of DNA strand breaks. Sensitivity was visible in the wild type only at concentrations above 0.6 mg/liter, but it was observed at much lower concentrations in dps recA mutants.  相似文献   

6.
The survival of Escherichia coli following treatment with a low dose (1-3 mM) of hydrogen peroxide (H(2)O(2)) that causes extensive mode-one killing of DNA repair mutants is stimulated by the induction of the SOS regulon. Results for various mutants indicate that induction of recA and RecA protein-mediated recombination are critical factors contributing to the repair of H(2)O(2)-induced oxidative DNA damage. However, because DNA damage activates RecA protein's coprotease activity essential to cleavage of LexA repressor protein and derepression of all SOS genes, it is unclear to what extent induction of RecA protein stimulates this repair. To make this determination, we examined mode-one killing of DeltarecA cells carrying plasmid-borne recA (P(tac)-recA(+)) and constitutively expressing a fully induced level of wild-type RecA protein when SOS genes other than recA are non-inducible in a lexA3 (Ind(-)) genetic background or inducible in a lexA(+) background. At a H(2)O(2) dose resulting in maximal killing, DeltarecA lexA3 (Ind(-)) cells with P(tac)-recA(+) show 40-fold greater survival than lexA3 (Ind(-)) cells with chromosomal recA having a low, non-induced level of RecA protein. However, they still show 10- to 15-fold lower survival than wild-type cells and DeltarecA lexA(+) cells with P(tac)-recA(+). To determine if the inducible RuvA protein stimulates survival, we examined a ruvA60 mutant that is defective for the repair of UV-induced DNA damage. This mutant also shows 10- to 15-fold lower survival than wild-type cells. We conclude that while induction of RecA protein has a pronounced stimulatory effect on the recombinational repair of H(2)O(2)-induced oxidative DNA damage, the induction of other SOS proteins such as RuvA is essential for wild-type repair.  相似文献   

7.
The increased respiratory and hexose monophosphate activities noted in phagocytizing cells results in the formation of hydrogen peroxide. This is brought about by the oxidation of reduced nicotinamide adenine dinucleotide phosphate by its oxidase. Evidence is presented which indicates that this H(2)O(2) is involved in the intracellular killing of bacteria. When molecular oxygen was excluded from phagocytizing leukocytes by anaerobiosis, thus inhibiting H(2)O(2) formation, reduced intracellular killing was observed. In some cases the impairment of leukocytic bactericidal activity by anaerobiosis could be partially reversed by the addition of H(2)O(2). Exogenous catalase also could reduce intracellular killing. In addition, when leukocytic isolates were dialyzed so as to reduce endogenous H(2)O(2), the bactericidal activity of the leukocytes was significantly decreased under both aerobic and anaerobic conditions. These results occurred with both guinea pig and human leukocytes and with several test microorganisms.  相似文献   

8.
Various deoxyribonucleic acid repair-deficient strains of Escherichia coli K-12 were exposed to hydrogen peroxide under anaerobic conling of the strains was determined. The level of catalase, peroxidase, and superoxide dismutase in cell-free extracts of the strains as well as the capacity of intact cells to decompose hydrogen peroxide were assayed, recA strains were more rapidly killed than other strains with deoxyribonucleic acid repair deficiencies. There was no correlation between the killing rate of the strains and the capacity of intact cells to decompose hydrogen peroxide or the level of catalase and superoxide dismutase in cell-free extracts. The level of peroxidase in cell-free extract was too low to be determined.  相似文献   

9.
A total of 33 strains of Lactobacillus belonging to 9 species, isolated from vagina, were tested for production of hydrogen peroxide. We observed that the following species: L. delbrueckii, L. acidophilus, L. crispatus, L. johnsonii and L. gasseri dominated over other species in secretion of hydrogen peroxide to the growth medium. Concentration of this substance amounted from 0.05 to 1.06 mM (in case of strong aeration the concentration increased up to 1.8 mM). Moreover, killing properties of the pure hydrogen peroxide exerted toward Escherichia coli and Candida albicans were less prominent than these of the supernatants of cultures of Lactobacillus strains producing H2O2.  相似文献   

10.
The role of catalase and superoxide dismutase (SOD) in response of the yeast Saccharomyces cerevisiae to oxidative stress induced by hydrogen peroxide in the middle-exponential phase has been investigated. It was shown that cell survival is significantly decreased after yeast exposure to hydrogen peroxide in the strains defective in cytosolic or peroxisomal catalases. Treatment of the wild-type cells with 0.5 mM H2O2 for 30 min causes an increase in the activity of catalase and superoxide dismutase, but the effect was not observed in all strains investigated. It was also shown that hydrogen peroxide leads to an increase in the activities of both catalases and Cu,Zn-containing SOD. The effect was cancelled by cycloheximide, an inhibitor of protein synthesis.  相似文献   

11.
Haemophilus influenzae transits between niches within the human host that are predicted to differ in oxygen levels. The ArcAB two-component signal transduction system controls gene expression in response to respiratory conditions of growth and has been implicated in bacterial pathogenesis, yet the mechanism is not understood. We undertook a genome-scale study to identify genes of the H. influenzae ArcA regulon. Deletion of arcA resulted in increased anaerobic expression of genes of the respiratory chain and of H. influenzae's partial tricarboxylic acid cycle, and decreased anaerobic expression levels of genes of polyamine metabolism, and iron sequestration. Deletion of arcA also conferred a susceptibility to transient exposure to hydrogen peroxide that was greater following anaerobic growth than after aerobic growth. Array data revealed that the dps gene, not previously assigned to the ArcA modulon in bacteria, exhibited decreased expression in the arcA mutant. Deletion of dps resulted in hydrogen peroxide sensitivity and complementation restored resistance, providing insight into the previously uncharacterized mechanism of arcA-mediated H(2)O(2) resistance. The results indicate a role for H. influenzae arcA and dps in pre-emptive defence against transitions from growth in low oxygen environments to aerobic exposure to hydrogen peroxide, an antibacterial oxidant produced by phagocytes during infection.  相似文献   

12.
Hydrogen peroxide and ultraviolet irradiation are known to interact synergistically for killing of bacterial spores. Synergy could be demonstrated with spores of Bacillus megaterium ATCC19213 adsorbed to filter paper strips or glass coverslips treated first with the peroxide and then dried for as long as 48 h prior to UV irradiation. This delayed action was considered to be due to absorption of the peroxide by the spores in an active but not readily vaporized form, which could become sporicidal also if the spores were heated to 50 degrees C. B. megaterium spores mixed with 0.1% (32.6 mM) H(2)O(2) solution appeared to absorb as much as 15 micromol/mg dry weight or about 0.5 mg/mg, but only a third to half of the peroxide could be recovered by water washing. A part of the unrecovered peroxide was degraded in reactions resulting in measurable production of oxygen. Degradation was not reduced by heating the spores to 65 degrees C or by azide and so appeared to be non-enzymatic. Spores of the anaerobe Clostridium sporogenes were also sensitized to ultraviolet killing by H(2)O(2) treatment followed by drying. They appear to absorb less peroxide, only about 2 micromol/mg, but had lower capacities to degrade H(2)O(2) so that nearly all of the peroxide could be recovered by washing with water. The findings presented should be helpful in the design of new methods for synergistic killing of spores by H(2)O(2) and UV irradiation or dry heat, especially involving, for example, packaging materials.  相似文献   

13.
A number of catalase-deficient mutants of Escherichia coli which exhibit no assayable catalase activity were isolated. The only physiological difference between the catalase mutants and their parents was a 50- to 60-fold greater sensitivity to killing by hydrogen peroxide. For comparison, mutations in the xthA and recA genes of the same strains increased the sensitivity of the mutants to hydrogen peroxide by seven- and fivefold, respectively, showing that catalase was the primary defense against hydrogen peroxide. One class of mutants named katE was localized between pfkB and xthA at 37.8 min on the E. coli genome. A second class of catalase mutants was found which did not map in this region.  相似文献   

14.
Cultured hepatocytes pretreated with the ferric iron chelator deferoxamine were resistant to the toxicity of H2O2 generated by either glucose oxidase or by the metabolism of menadione (2-methyl-1,4-naphthoquinone). Ferric, ferrous, or cupric ions restored the sensitivity of the cells to H2O2. Deferoxamine added to hepatocytes previously treated with this chelator prevented the restoration of cell killing by only ferric iron. The free radical scavengers mannitol, thiourea, benzoate, and 4-methylmercapto-2-oxobutyrate protected either native cells exposed to H2O2 or pretreated hepatocytes exposed to H2O2 and given ferric or ferrous iron. Superoxide dismutase prevented the killing of native hepatocytes by either glucose oxidase or menadione. With deferoxamine-pretreated hepatocytes, superoxide dismutase prevented the cell killing dependent upon the addition of ferric but not ferrous iron. Catalase prevented the killing by menadione of deferoxamine-pretreated hepatocytes given either ferric or ferrous iron. Deferoxamine pretreatment did not prevent the toxicity of t-butyl hydroperoxide but did, however, prevent that of cumene hydroperoxide. It is concluded that both ferric iron and superoxide ions are required for the killing of cultured hepatocytes by H2O2. The toxicity of H2O2 is also dependent upon its reaction with ferrous iron to form hydroxyl radicals by the Fenton reaction. The ferrous iron needed for this reaction is formed by the reduction of cellular ferric iron by superoxide ions. Such a sequence corresponds to the so-called iron-catalyzed Haber-Weiss reaction, and the present report documents its participation in the killing of intact hepatocytes by H2O2. Cumene hydroperoxide but not t-butyl hydroperoxide closely models the toxicity of hydrogen peroxide.  相似文献   

15.
The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.  相似文献   

16.
Regulation of the Arabidopsis transcriptome by oxidative stress   总被引:34,自引:0,他引:34  
  相似文献   

17.
Catechol-2,3-dioxygenase (C23O) of Pseudomonas putida, encoded by the xylE gene, was found to be sensitive to hydrogen peroxide (H(2)O(2)) when used as a reporter in gene fusion constructs. Exposure of Pseudomonas aeruginosa katA or katA katB mutants harboring katA- or katB-lacZ (encoding beta-galactosidase) or -xylE fusion plasmids to H(2)O(2) stimulated beta-galactosidase activity, while there was little or no detectable C23O activity in these strains. More than 95% of C23O activity was lost after a 5-min exposure to equimolar H(2)O(2), while a 10,000-fold excess was required for similar inhibition of beta-galactosidase. Electron paramagnetic resonance spectra of the nitrosyl complexes of C23O showed that H(2)O(2) nearly stoichiometrically oxidized the essential active-site ferrous ion, thus accounting for the loss of activity. Our results suggest using caution in interpreting data derived from xylE reporter fusions under aerobic conditions, especially where oxidative stress is present or when catalase-deficient strains are used.  相似文献   

18.
P Tachon 《Mutation research》1990,228(2):221-228
The enhancing effect of L-histidine on the hydrogen peroxide (H2O2) induction of micronuclei and of sister-chromatid exchanges (SCEs) as well as on its killing effect was investigated using Chinese hamster fibroblasts. L-Histidine increased cellular killing and the frequency of micronuclei but not SCEs induced by H2O2. Superoxide dismutase and mannitol did not decrease the killing effect whereas mannitol completely prevented the formation of micronuclei and of SCEs induced by H2O2 or by H2O2 plus L-histidine. When the iron-complexing agents EDTA or o-phenanthroline were present, only o-phenanthroline inhibited the killing and clastogenic effects of H2O2 or of H2O2 plus L-histidine. D-Histidine had the same effect as L-histidine, but histamine and L-urocanic acid did not. These results indicated that both the amino and the carboxylic groups of histidine are required for the enhancing effect and suggested that it depends on the formation of an intracellular histidine-iron complex able to react with H2O2 generating reactive oxygen species.  相似文献   

19.
Xanthomonas encounters highly toxic reactive oxygen species (ROS) from many sources, such as those generated by plants against invading bacteria, other soil bacteria and from aerobic respiration. Thus, conditions that alter intracellular ROS levels such as exposure to toxic metalloids would have profound effects on bacterial physiology. Here, we report that exposure of Xanthomonas campestris pv. phaseoli (Xp) to low levels of arsenic induces physiological cross-protection against killing by H(2)O(2) and organic hydroperoxide but not a superoxide generator. Cross-protection against H(2)O(2) and organic hydroperoxide toxicity was due to increased expression of genes encoding major peroxide-metabolizing enzymes such as alkyl hydroperoxide reductase (AhpC), catalase (KatA) and organic hydroperoxide resistance protein (Ohr). Arsenic-induced protection against H(2)O(2) and organic hydroperoxide requires the peroxide stress response regulators, OxyR and OhrR, respectively. Moreover, analyses of double mutants of the major H(2)O(2) and organic hyproperoxide-scavenging enzymes, Xp ahpC katA and Xp ahpC ohr, respectively, suggested the existence of unidentified OxyR- and OhrR-regulated genes that are involved in arsenic-induced resistance to H(2)O(2) and organic hyproperoxide killing in Xp. These arsenic-induced physiological alterations could play an important role in bacterial survival both in the soil environment and during plant-pathogen interactions.  相似文献   

20.
Hydrogen peroxide is generated during aerobic metabolism and is capable of damaging critical biomolecules. However, mutants of Escherichia coli that are devoid of catalase typically exhibit no adverse phenotypes during growth in aerobic media. We discovered that catalase mutants retain the ability to rapidly scavenge H(2)O(2) whether it is formed internally or provided exogenously. Analysis of candidate genes revealed that the residual activity is due to alkyl hydroperoxide reductase (Ahp). Mutants that lack both Ahp and catalase could not scavenge H(2)O(2). These mutants excreted substantial amounts of H(2)O(2), and they grew poorly in air. Ahp is kinetically a more efficient scavenger of trace H(2)O(2) than is catalase and therefore is likely to be the primary scavenger of endogenous H(2)O(2). Accordingly, mutants that lack Ahp accumulated sufficient hydrogen peroxide to induce the OxyR regulon, whereas the OxyR regulon remained off in catalase mutants. Catalase still has an important role in wild-type cells, because the activity of Ahp is saturated at a low (10(-5) M) concentration of H(2)O(2). In contrast, catalase has a high K(m), and it therefore becomes the predominant scavenger when H(2)O(2) concentrations are high. This arrangement is reasonable because the cell cannot provide enough NADH for Ahp to rapidly degrade large amounts of H(2)O(2). In sum, E. coli does indeed generate substantial H(2)O(2), but damage is averted by the scavenging activity of Ahp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号