首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Research on the functional anatomy of visual cortical circuits has recently zoomed in from the macroscopic level to the microscopic. High-resolution functional imaging has revealed that the functional architecture of orientation maps in higher mammals is built with single-cell precision. By contrast, orientation selectivity in rodents is dispersed on visual cortex in a salt-and-pepper fashion, despite highly tuned visual responses. Recent studies of synaptic physiology indicate that there are disjoint subnetworks of interconnected cells in the rodent visual cortex. These intermingled subnetworks, described in vitro, may relate to the intermingled ensembles of cells tuned to different orientations, described in vivo. This hypothesis may soon be tested with new anatomic techniques that promise to reveal the detailed wiring diagram of cortical circuits.  相似文献   

2.
This is a study of the effects of monocular deprivation, reverse suturing (opening the deprived eye with closure of the other) and reopening of the deprived eye alone (without closing the other) on the physiological organization of the primary visual cortex in monkeys (Erythrocebus patas). All animals were initially monocularly deprived by suture of the lids of the right eye from soon after birth until about 4 weeks of age (24-29 days). In a monocularly deprived animal, recordings were taken from area 17 at 24 days. Already most neurons recorded outside layer IVc, were strongly or completely dominated by functional input from the left eye. The Non-oriented cells of layer IVc, where the bulk of the afferent input terminates, were also mainly dominated by the left eye. Although segregation of input from the two eyes was not complete, large areas of layer IVc were already monocularly dominated by the left eye. Four animals were reverse-sutured at about 4 weeks and recorded 3, 6, 15 and 126 days later. In each animal the pattern of ocular dominance was fairly similar within and outside layer IVc. Even with only 3 days of forced usage of the initially deprived right eye, about half of all cells recorded had become dominated by it, and the process of "recapture' of cortical cells by the initially deprived eye was apparently complete within 15 days. In layer IVc, the recovery took the form of an expansion of zones dominated by the deprived eye, as if the originally shrunken stripes of afferent termination had become enlarged. Binocularly driven neurons were rare at all stages, in all layers, but when present and orientation-selective, they had similar preferred orientations in the two eyes. Likewise the "columnar' sequences of preferred orientation continued without obvious disruption on shifting from regions dominated by one eye to those dominated by the other. Simply reopening the deprived eye at about 4 weeks, for 15 to 96 days caused no detectable change in the overall ocular dominance of cortical cells and, on average, no expansion of right-eye dominance columns in layer IVc. Therefore the recovery seen after reverse suturing depends not just on the restoration of normal activity to axons carrying information from the right eye, but on the establishment of a competitive advantage, through the right eye being made more active than the left.  相似文献   

3.
4.
Transneuronal autoradiography was used to study the effects of visual deprivation on the ocular dominance stripes in layer IVc of the striated cortex of Erythrocebus patas (Old World) monkeys. The animals were studied after: (a) 21-28 days of monocular deprivation starting at, or within, a few days of birth; (b) the same treatment followed by a further 3, 6, 15 or 126 days of monocular vision through both eyes (reopening). One other monkey was monocularly deprived from birth to 1890 days. In most cases the behaviour of the ocular dominance stripes formed by the initially closed eye was studied. After 24 days of monocular deprivation from birth, the input from the normal eye was distributed uniformly within layer IVc, with no periodicity evident. After 21 days of deprivation, the deprived eye's input formed narrow stripes occupying about 38% of layer IVc in the operculum. Seven months of monocular deprivation reduced this to about 29%. Opening the closed eye after the deprivation produced no change in the area innervated: when periods of 15 or 96 days of binocular vision followed the deprivation, the areas innervated by the initially deprived eye were 26 and 30% respectively. However, in both cases the deprived eye's input formed blobs and spots, rather than uniformly narrow stripes. In contrast to reopening, reverse suturing increased the fraction of layer IVc occupied by input form the initially deprived eye. In the operculum, the effects of reverse suturing appeared to be fully developed after only 6 days of reversal: the initially deprived eye's stripes having expanded to occupy about 50% of layer IVc. A further 9 days' reversal produced little change in this. In the visual cortex in the calcarine fissure, the effect of the initial deprivation ws more severe, and the expansion induced by reverse suturing more pronounced. The initial deprivation caused the stripes to shrink to occupy 24% of layer IVc; after 6 days of reverse sulture the proportion increased to 52%, while after 15 days of reverse suture about 88% of IVc was occupied. These results show that reverse suturing can cause fresh growth of afferent axons in regions of layer IVc from which they had been at least partially removed, either by the normal process of segregation, or as a consequence of monocular deprivation. Taken in conjuction with the findings of the accompanying two papers (Blackemore et al...  相似文献   

5.
 A phenomenological model of the mechanism of stabilization of the body orientation during locomotion (dorsal side up) in the lamprey is presented. The mathematical modeling is based on experimental results obtained during investigations of postural control in lampreys using a combined in vivo and robotics approach. The dynamics of the model agree qualitatively with the experimental data. It is shown by computer simulations that postural correction commands from reticulospinal neurons provide information sufficient to stabilize body orientation in the lamprey. The model is based on differences between the effects exerted by the vestibular apparatus on the left and the right side. Received: 16 February 2000 / Accepted in revised form: 29 September 2000  相似文献   

6.
7.
S Sally  R Gurnsey 《Spatial Vision》2001,14(2):217-234
Humans are extremely sensitive to symmetry when it is foveated but sensitivity drops as a symmetrical region of a fixed size is moved into the periphery. A psychophysical study was undertaken to determine if eccentricity dependent sensitivity loss could be overcome by magnifying stimuli at each eccentricity (E) by a factor F = 1 + E/E2, where E2 indicates the eccentricity at which the size of a stimulus must be doubled, relative to a foveal standard, to achieve equivalent performance. The psychophysical task required subjects to decide on each trial in which of two intervals a symmetrical stimulus had been presented. Stimuli were presented at a range of sizes and eccentricities (0 to 8 degrees) and the probability of a correct discrimination was computed for each condition. In Experiment 1, thresholds were measured with stimuli set to maximum available contrast and, in Experiment 2, stimuli were presented at a constant multiple of contrast detection threshold. In both experiments, a single scaling function removed most of the eccentricity dependent variation from the data. However, the E2 value recovered for one subject tested in both experiments was larger by about 65% when stimuli were not equated for visibility. We conclude that symmetry detection can be equated across a range of eccentricities by scaling stimuli with an E2 in the range of 0.88 to 1.38 degrees. Failure to equate for visibility across all viewing conditions may result in an inflated estimate of E2.  相似文献   

8.
When standing human subjects are exposed to a moving visual environment, the induced postural sway displays varying degrees of coherence with the visual information. In our experiment we varied the frequency of an oscillatory visual display and analysed the temporal relationship between visual motion and sway. We found that subjects maintain sizeable sway amplitudes even as temporal coherence with the display is lost. Postural sway tended to phase lead (for frequencies below 0.2 Hz) or phase lag (above 0.3 Hz). However, we also observed at a fixed frequency, highly variable phase relationships in which a preferred range of phase lags is prevalent, but phase jumps occur that return the system into the preferred range after phase has begun drifting out of the preferred regime. By comparing the results quantitatively with a dynamical model (the sine-circle map), we show that this effect can be understood as a form of relative coordination and arises through an instability of the dynamics of the action-perception cycle. Because such instabilities cannot arise in passively driven systems, we conclude that postural sway in this situation is actively generated as rhythmic movement which is coupled dynamically to the visual motion. Received: 7 September 1993/Accepted in revised form: 2 May 1994  相似文献   

9.
The properties of the system maintaining the upright posture were compared in different states of the oculomotor system: during target fixation and horizontal fast and slow pursuit (0.1 and 0.01 Hz), recording the trajectories of the center of pressure in the frontal and the sagittal planes. Methods of nonlinear analysis were applied to assess the similarity in pairwise comparisons. The overall similarity of the frontal plane dynamics proved to be higher than that of the sagittal plane dynamics. However, differences were revealed in fast pursuit versus slow pursuit or fixation in the frontal but not in the sagittal plane. Such differences may reflect the different inertia of the oculomotor and the balance control systems. In general, the results are consistent with the current notions on the two orthogonal subsystems of postural control.  相似文献   

10.
In recent years, studies of nervous mechanisms for the control of body posture have been performed on animal models of different complexity - cat, rabbit, lamprey and the mollusc Clione. These studies have greatly expanded our knowledge of how the control system operates, how the system can change the stabilized body orientation and how the postural functions are distributed within different parts of the CNS. For simpler animal models, the postural network has been analyzed in considerable detail and main cell types and their interactions have been identified.  相似文献   

11.
Most types of human and animal motor behaviour are spatially oriented. Studies of the fish gravity orientation system are proving particularly valuable for understanding the functional organization of this system in higher animals. In particular, the development of in vitro central nervous system preparations with gravity sensory organs that exhibit a 'fictive' space orientation behaviour has led to some important new discoveries.  相似文献   

12.
13.
14.
New measures to characterize center-of-pressure (COP) trajectories during quiet standing were proposed and then utilized to investigate changes in postural control with respect to visual input. Eleven healthy male subjects (aged 20-27 years) were included in this study. An instrumented force platform was used to measure the time-varying displacements of the COP under each subject's feet during quiet standing. The subjects were tested under eyes-open and eyes-closed conditions. The COP time series were separately analyzed for the medio-lateral and antero-posterior directions. The proposed measures were obtained from the parameter estimation of auto-regressive (AR) models. The percentage contributions and geometrical moment of AR coefficients showed statistically significant differences between vision conditions. The present COP displacements under the eyes-open condition showed higher correlation with the past COP displacements at longer lag times, when compared to the eyes-closed condition. In contrast, no significant differences between vision conditions were found for conventional summary statistics, e.g., the total length of the COP path. These results suggest that the AR parameters are useful for the evaluation of postural stability and balance function, even for healthy young individuals. The role of visual input in the postural control system and implications of the findings were discussed.  相似文献   

15.
Frenkel MY  Bear MF 《Neuron》2004,44(6):917-923
We used a chronic recording method to document the kinetics of ocular dominance (OD) plasticity induced by temporary lid closure in young mice. We find that monocular deprivation (MD) induces two separate modifications: (1) rapid, deprivation-induced response depression and (2) delayed, deprivation-enabled, experience-dependent response potentiation. To gain insight into how altering retinal activity triggers these cortical responses, we compared the effects of MD by lid closure with monocular inactivation (MI) by intravitreal injection of tetrodotoxin. We find that MI fails to induce deprived-eye response depression but promotes potentiation of responses driven by the normal eye. These effects of MI in juvenile mice closely resemble the effects of MD in adult mice. Understanding how MI and MD differentially affect activity in the visual system of young mice may provide key insight into how the critical period ends.  相似文献   

16.
17.
18.
The mechanism of musculoskeletal pain underlying low level static exertions, such as those experienced during computer work, is poorly understood. It was hypothesized that static postural and visual stress experienced during computer work might contribute to trigger point development in the trapezius muscles, resulting in myofascial pain. A study was conducted to observe the development of myofascial trigger points while 16 female subjects used a computer under conditions of high and low postural and visual stress. Trigger point development was monitored via expert opinion, subject self-report, and electromyographic activity. Only the high visual stress conditions resulted in greater trigger point sensitivity as reported by subjects and the myofascial specialist. Cyclic trends in median frequency of the EMG signal were assessed for the trapezius muscle. When high visual stress was combined with low postural stress condition there were significantly fewer cycles (1.6 cycles) as compared to the condition of low visual and low postural stress (2.8 cycles), and the condition of high visual and high postural stress (3.5 cycles). These significant differences between conditions were found for the right trapezius but not for the left. The findings suggest that high visual stress may be involved in the development of the myofascial pain response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号