首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alternative approach to the development of clinically useful protease inhibitors was investigated. The approach utilized coordination chemistry of transition metal ions rather than substrate analogs to block active sites of these enzymes. In the case of serine proteases it was found that aqueous Ti(IV) is a potent inhibitor of the trypsin subclass, but not the chymotrypsin subclass. The direct binding of Ti(IV) to trypsin was made possible by the presence of a free carboxyl group at the bottom of the substrate binding pocket of the enzyme, and the five-coordinate geometry of TiO(SO4)(H2O). Although initial binding of Ti(IV) was reversible, it was followed in time by irreversible inhibition. Direct binding of octahedral or tetrahedral metal ion complexes was prevented by the inability of the enzyme active sites to promote formation of a five-coordinate transition state of the metal ion required for reaction. These studies demonstrate the ability of direct metal ion binding as a way to enhance blocking of enzyme active sites as compared with that of traditional organic inhibitors. Application of these findings was investigated by measuring the affect Ti(IV) had on growth ofEscherichia coli, Salmonella typhimurium, andPseudotnonas aeruginosa. Five-coordinate titanyl sulfate completely inhibited the growth of these organisms. This suggests that five-coordinate titanyl sulfate, which is easier and less expensive to manufacture than conventional antibiotics, may be useful in controlling endemic infections ofE. coli andS. typhimurium.  相似文献   

2.
An affinity-label chelate for the enzyme trypsin was synthesized by a novel synthetic technique which takes advantage of the presence of a dangling carboxylate arm in the [Co(EDTA)Cl]2- complex anion. The dangling carboxylate group was coupled to the amino group of p-aminobenzamidine, an effective inhibitor of trypsin activity, via the carbodiimmide reaction to produce a trypsin affinity label at one end and a strong EDTA-like chelating agent at the other, coupled through an amide bond. The cobalt ion can be removed if desired by reduction with Fe2+ + ascorbate, and alternate metal ions inserted in its place. The reaction is general, and affinity labels which contain amino groups can be easily coupled via this procedure, allowing the introduction of a paramagnetic or fluorescent probe into a protein or nucleotide system. The same method has been used to prepare a highly effective chelating gel which is capable of removing calcium and lanthanide ions from the binding protein parvalbumin.  相似文献   

3.
Regulation of serine protease activity by an engineered metal switch   总被引:6,自引:0,他引:6  
A recombinant trypsin was designed whose catalytic activity can be regulated by varying the concentration of Cu2+ in solution. Substitution of Arg-96 with a His in rat trypsin (trypsin R96H) places a new imidazole group on the surface of the enzyme near the essential active-site His-57. The unique spatial orientation of these His side chains results in the formation of a stable, metal-binding site that chelates divalent first-row transition-metal ions. Occupancy of this site by a metal ion prevents the imidazole group of His-57 from participating as a general base in catalysis. As a consequence, the primary effect of the transition metal ion is to inhibit the esterase and amidase activities of trypsin R96H. The apparent Ki for this inhibition is in the micromolar range for copper, nickel, and zinc, the tightest binding being to Cu2+ at 21 microM. Trypsin R96H activity can be fully restored by removing the bound Cu2+ ion with EDTA. Multiple cycles of inhibition by Cu2+ ions and reactivation by EDTA demonstrate that reversible regulatory control has been introduced into the enzyme. These results describe a novel mode of inhibition of serine protease activity that may also prove applicable to other proteins.  相似文献   

4.
Enzymes, especially proteases, have become an important and indispensable part of the processes used by the modern food and feed industry to produce a large and diversified range of products for human and animal consumption. A cysteine protease, used extensively in the food industry, was purified from germinated wheat Triticum aestivum (cv. Giza 164) grains through a simple reproducible method consisting of extraction, ion exchange chromatography and gel filtration. The molecular weight of the enzyme was estimated to be 61000+/-1200-62000+/-1500 by SDS-PAGE and gel filtration. The cysteine protease had an isoelectric point and pH optimum at 4.4 and 4.0, respectively. The enzyme exhibited more activity toward azocasein than the other examined substrates with K(m) 2.8+/-0.15 mg azocasein/ml. In addition, it had a temperature optimum of 50 degrees C and based on a heat stability study 55% of its initial activity remained after preincubation of the enzyme at 50 degrees C for 30 min prior to substrate addition. All the examined metal cations inhibited the enzyme except Co(2+), Mg(2+), Mn(2+) and Li(+). The proteolytic activity of the enzyme was inhibited by thiol-specific inhibitors, whereas iodoacetate and p-hydroxymercuribenzoate caused a competitive inhibition with Ki values 6+/-0.3 mM and 21+/-1.2 microM, respectively. Soybean trypsin inhibitor had no effect on the enzyme. The enzyme activity remained almost constant for 150 days of storage at -20 degrees C. The properties of this enzyme, temperature and pH optima, substrate specificity, stability and sensitivity to inhibitors or activators, meet the prerequisites needed for food industries.  相似文献   

5.
Possible pitfalls in mapping studies utilizing the nuclear relaxation rates induced by paramagnetic probes are pointed out. In cases in which a distance is sought between a paramagnetic ion and a small molecule (e.g. substrate, inhibitor, etc.), both bound non-covalently to a macromolecule, heterogeneity in the system with respect to the binding of either of them may result in ambiguous conclusions. It is shown that the trypsin-gadolinium (III)-inhibitor system is heterogeneous, as revealed in the dependence of the water and inhibitor proton line-widths upon both the Gd3+ and the enzyme concentrations and in the effects of added Ca2+ on the line-widths. The results imply that in published work (Abbott et al. (1975) Biochemistry 14, 4935) the distance from a weak rather than from the strong metal ion binding site of trypsin (EC 3.4.21.4) may have been determined.  相似文献   

6.
Aminoacylase I from porcine kidney (EC 3.5.1.14) contains seven cysteine residues per subunit. Three sulfhydryl groups are accessible to modification by 4-hydroxymercuribenzoate (p-MB). The kinetics of the reaction suggest that only one of these groups affects acylase activity when modified by p-MB. Its reaction rate increases 2-3-fold when the essential metal ion of aminoacylase is removed. Modification of metal-free apoenzyme by N-ethylmaleimide (NEM) abolishes its activity without impairing Zn2+ binding. This indicates that the sulfhydryl group reacting with NEM is not directly coordinated to the metal. DTNB (5,5'-Dithio-bis(2-nitrobenzoate), Ellman's reagent) also modifies three sulfhydryl groups per subunit. In this case, the reactivities of native aminoacylase and apoenzyme are not significantly different. N-Hydroxy-2-aminobutyrate, a strong aminoacylase inhibitor, substantially increases the reactivity of the slowest reacting sulfhydryl in both native enzyme and metal-free aminoacylase. It appears that binding of the inhibitor or removal of the metal ion induces conformational changes of the amino-acylase active site that render a buried sulfhydryl group more accessible to modification.  相似文献   

7.
Homogenates from malignant tumors, obtained from surgery specimens or from transplants of Walker 256 carcinosarcoma in rats, contained an enzyme activity capable of degrading intact 3H-acetylated basement membranes from bovine lens. The enzyme activity from murine tumor was purified about 7500-fold by (NH4)2SO4 fractionation, ion exchange and gel chromatography. The apparent molecular weight of the purified enzyme was approximately 50,000. The rate of degradation of 3H-labelled basement membrane by the murine tumor enzyme was reduced by addition of excess type IV collagen, but not of excess type I, type III or type V collagen. These results suggested specificity of this enzyme for type IV collagen. Inhibitors of serine proteinases, thiol proteinases and soybean trypsin inhibitor were without effect on the enzyme activity. Chelators such as 1,10-phenanthroline or EDTA reduced the activity to control levels, indicating that the enzyme activity was due to a metalloproteinase. Chromatographic and electrophoretic separation of the enzymatic products from 3H-labelled basement membrane and type IV collagen indicated that the enzyme activity was due to a type IV collagenase. The use of basement membrane in the native physiological state as a substrate for the study of basement membrane-degrading activity by homogenates of solid malignant tumors offers an in vitro model for the investigation of the metastatic potential of these tumors.  相似文献   

8.
A putative proenkephalin-cleaving enzyme (PCE) extracted from bovine adrenal chromaffin granules was purified with soybean trypsin inhibitor high-performance affinity chromatography. The 12,600-fold purified enzyme was maximally active at pH 8.0. The enzyme was completely inhibited with lima bean trypsin inhibitor (0.1 mg/ml), soybean trypsin inhibitor (0.1 mg/ml), and p-(chloromercuri)benzenesulfonic acid (1.0 mM), indicating PCE is a serine protease with cysteine residues likely to be involved in its structure or activity. It exhibited significant autoproteolysis without specific substrates present. The substrate specificity and kinetic constants with the enkephalin-containing (EC) peptides Leu-9 and proenkephalin Peptides B, E, and F as substrates were studied. The cleavage patterns were substantially different than with trypsin digestion. PCE specifically recognized the paired basic amino acid residues and predominantly cleaved the peptide bonds between Lys and Arg sites and peptide bonds after Lys-Lys and Arg-Arg sites. Different Km and Vmax values for the different Lys-Arg sites indicate sequences in addition to the paired basic residues can affect enzyme activity. Also, the lower Km and Vmax of Peptide E suggest a higher affinity for this peptide but much slower cleavage. The C-terminally located Lys-Arg site appears responsible for this high affinity. Based on these observations, we propose the following: (a) the primary structure of these peptides contains enough information to be processed correctly by PCE and (b) PCE may be regulated by pH and Peptide E to prevent extensive processing of the intermediate EC peptides which are the major opioid peptides found in the adrenal chromaffin granules.  相似文献   

9.
Highly purified aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) from Escherichia coli, already of full activity, is further activated 3.3-fold by limited treatment with trypsin. The activation requires a few minutes to attain maximum level, and hereafter the activity gradually decreases to complete inactivation. Prior or intermediate addition of soybean trypsin inhibitor results in an immediate cessation of any further change in the enzyme activity. Upon trypsin-mediated activation no appreciable change is detected in the molecular weight of the enzyme subunits as judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis, nor in the pH vs. activity profile in the presence of added metal ions. However, S0.5 and hill coefficient for L-aspartate considerably increase upon activation. As the trypsin-mediated activation proceeds, a marked absorbance difference spectrum of the trypsin-treated aspartase vs. untreated aspartase appears with negative absorbance maxima at 278 and 285 nm. When the trypsin-activated enzyme is denatured in 4 M guanidine-HCl, followed by removal of the denaturant by dilution, the enzyme activity is readily restored to as much as 1.5 times that of the native enzyme, indicating that the trypsin-activated enzyme is rather a stable molecule.  相似文献   

10.
Xanthine oxidase and endothelium dependent relaxation   总被引:1,自引:0,他引:1  
Superoxide anion (O2-) generated from xanthine oxidase/xanthine has been used to decrease the half life of endothelium derived relaxing factor (EDRF). However, by itself, xanthine oxidase causes endothelium dependent relaxation. This relaxation is unrelated to the oxidative property of the enzyme since it is not inhibited by allopurinol. In addition, the relaxation is not inhibited by the cyclooxygenase inhibitor, indomethacin, or the phospholipase A2 inhibitor, p-bromophenacyl bromide. On the other hand the relaxation is inhibited by the trypsin inhibitor (TI) from chicken egg white. A similar endothelium dependent relaxation elicited by pancreatin and trypsin is also inhibited by TI. Pancreatin used in the preparation of xanthine oxidase contains trypsin, chymotrypsin and carboxypeptidase. When compared to trypsin both chymotrypsin and carboxypeptidase elicit little relaxation. Thus the endothelium dependent relaxation elicited by xanthine oxidase is likely due to contamination with trypsin. Our results emphasize that when the superoxide generating system, xanthine oxidase/xanthine is used to study the effect of oxygen radicals on EDRF, it is advantageous to ensure that only purified preparations of xanthine oxidase are used.  相似文献   

11.
Ferrochelatase is the terminal enzyme in haem biosynthesis, i.e. the enzyme that inserts a ferrous ion into the porphyrin ring. Suggested reaction mechanisms for this enzyme involve a distortion of the porphyrin ring when it is bound to the enzyme. We have examined the energetics of such distortions using various theoretical calculations. With the density functional B3LYP method we calculate how much energy it costs to tilt one of the pyrrole rings out of the porphyrin plane for an isolated porphyrin molecule without or with a divalent metal ion in the centre of the ring. A tilt of 30 degrees costs 65-130 kJ/mol for most metal ions, but only approximately 48 kJ/mol for free-base (neutral) porphine. This indicates that once the metal is inserted, the porphyrin becomes stiffer and flatter, and therefore binds with lower affinity to a site designed to bind a distorted porphyrin. This would facilitate the release of the product from ferrochelatase. This proposal is strengthened by the fact that the only tested metal ion with a lower distortion energy than free-base porphyrin (Cd(2+)) is an inhibitor of ferrochelatase. Moreover, it costs even less energy to tilt a doubly deprotonated porphine(2-) molecule. This suggests that the protein may lower the acid constant of the pyrrole nitrogen atoms by deforming the porphyrin molecule. We have also estimated the structure of the protoporphyrin IX substrate bound to ferrochelatase using combined quantum chemical and molecular mechanics calculations. The result shows that the protein may distort the porphyrin by approximately 20 kJ/mol, leading to a distinctly non-planar structure. All four pyrrole rings are tilted out of the porphyrin mean plane (1-16 degrees ) but most towards the putative binding site of the metal ion. The predicted tilt is considerably smaller than that observed in the crystal structure of a porphyrin inhibitor.  相似文献   

12.
A trypsin-like enzyme has been isolated from the filtrate of a Streptomyces rimosus forma paromomycinus culture. Purification involves acetone fractionated precipitation, ultrafiltration on a Diaflo UM 10 membrane and affinity adsorption on to Kunitz pancreatic trypsin inhibitor linked to Sepharose. The trypsin-like enzyme (paromotrypsin) appears homogeneous by zone electrophoresis on gelatinized cellulose acetate. Specific activity toward Tos-Arg-OMe, calculated from amino acid analysis, is about 220 mu mg-1. The overall yield in activity is about 30%. The molecular weight of the trypsin-like enzyme, determined by gel filtration, is around 22,000-25,000 daltons. Electrophoretic migration on cellulose acetate strips indicates an isoelectric point around 8. Amino acid composition has been determined; the protein comprises about 210 residues on the basis of a single histidine residue per molecule. Paromotrypsin is unstable in acidic medium and is not stabilized by calcium ions. Enzymic activity towards Bz-Argo-OEt is not increased by the addition of calcium ion in contrast to the activating effect observed on bovine trypsin. Paromotrypsin is inhbited by TLCK and NPGB; it interacts with naturally occurring bovine trypsin inhibitors such as soya bean and Kunitz pancreatic inhibitors, but not with chicken ovomucoid. Proteolytic specificity, examined by hydrolysis of oxidized Kunitz pancreatic inhibitor and characterization of resulting peptides, seems similar to that of bovine trypsin.  相似文献   

13.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

14.
We have discovered and characterized a kallikrein-like latent serine protease in intact human erythrocytes and ghosts. The enzyme is activatable by trypsin. The solubilized enzyme has esterolytic activity with a pH optimum of 9; but the membrane-associated activity increases almost linearly up to pH 10. The activated enzyme releases kinin from bovine low molecular weight kininogen. Enzyme activity is inhibited by TosLysCH2Cl , phenylmethylsulfonyl fluoride, aprotinin and amiloride, and weakly by soybean or lima bean trypsin inhibitor. It is inhibited by Co2+, Zn2+ and Mn2+ but is stimulated by Fe2+, deoxycholate and phospholipase A2. An erythrocyte membrane protein (Mr = 88,000) with an active site serine residue was identified with [14C]-diisopropylphosphorofluoridate labeling. Consistent with the finding of tryptic activation of the latent erythrocyte serine protease, trypsin treatment reduced the density of labeling of this protein and revealed a lower molecular weight form (Mr = 64,000). Possible relationships between the activity of this newly identified serine protease and events such as erythrocyte membrane ion fluxes might be of interest.  相似文献   

15.
The crystal structures of the complexes of bovine trypsin with m-guanidinosalicylidene-l-alaninato(aqua)copper(II) hydrochloride (inhibitor 1), [N,N′-bis(m-guanidinosalicylidene)ethylenediaminato]copper(II) (inhibitor 2), and [N,N′-bis(m-amidinosalicylidene)ethylenediaminato]copper(II) (inhibitor 4) have been determined. The guanidine-containing trypsin-inhibitors (1 and 2) bind to the trypsin active site in a manner similar to that previously reported for amidine-containing inhibitors, for example, m-amidinosalicylidene-l-alaninato(aqua)copper(II) hydrochloride (inhibitor 3). However, the binding mode of the guanidino groups of inhibitors 1 and 2 to Asp189 in the S1 pocket of trypsin was found to be markedly different from that of the amidino group of inhibitor 3. The present X-ray analyses revealed that the interactions of the metal ion of the inhibitors with the active site residues of trypsin play a crucial role in the binding affinity to the trypsin molecule. These structural information and inhibitory activity data for amidine- and guanidine-containing Schiff base metal chelate inhibitors provide new avenues for designing novel inhibitors against physiologically important trypsin-like serine proteases.  相似文献   

16.
A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg(19). The inhibition constant was determined for BWI-2c against trypsin (1.7×10(-1)0 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.  相似文献   

17.
In low ionic media, mitochondrial glycerophosphate acyltransferase was inhibited virtually completely within 15 min by the nonspecific proteases, proteinase K and subtilisin. In high ionic media, the mitochondrial enzyme was either not inhibited or was marginally inhibited by these proteases. Chymotrypsin and trypsin, regardless of the ionic strength of the medium, did not inhibit the acyltransferase. Substantial inhibition by proteinase K and subtilisin was observed in the high ionic media when the incubation was continued for 30 or 45 min. Adenylate kinase, an intermembrane enzyme, was not inhibited under any of the above conditions. These results demonstrate a cytosolic exposure of the mitochondrial acyltransferase. In a low ionic environment, when the outer membrane integrity was damaged either by gradually decreasing the tonicity of the medium or by stepwise addition of Triton X-100, either chymotrypsin or trypsin caused virtually parallel inhibition of glycerophosphate acyltransferase and adenylate kinase. A more direct approach in establishing the existence of protease-susceptible sites on the inner side of the outer membrane was taken by observing the inhibition of mitochondrial glycerophosphate acyltransferase and adenylate kinase in trypsinloaded right-side-out outer membrane vesicles incubated in the presence of externally located soybean trypsin inhibitor. The above results, taken together, suggest that mitochondrial glycerophosphate acyltransferase spans the transverse plane of the outer membrane.  相似文献   

18.
We have previously shown that a trypsin inhibitor from desert locust Schistocerca gregaria (SGTI) is a taxon-specific inhibitor that inhibits arthropod trypsins, such as crayfish trypsin, five orders of magnitude more effectively than mammalian trypsins. Thermal denaturation experiments, presented here, confirm the inhibition kinetics studies; upon addition of SGTI the melting temperatures of crayfish and bovine trypsins increased 27 degrees C and 4.5 degrees C, respectively. To explore the structural features responsible for this taxon specificity we crystallized natural crayfish trypsin in complex with chemically synthesized SGTI. This is the first X-ray structure of an arthropod trypsin and also the highest resolution (1.2A) structure of a trypsin-protein inhibitor complex reported so far. Structural data show that in addition to the primary binding loop, residues P3-P3' of SGTI, the interactions between SGTI and the crayfish enzyme are also extended over the P12-P4 and P4'-P5' regions. This is partly due to a structural change of region P10-P4 in the SGTI structure induced by binding of the inhibitor to crayfish trypsin. The comparison of SGTI-crayfish trypsin and SGTI-bovine trypsin complexes by structure-based calculations revealed a significant interaction energy surplus for the SGTI-crayfish trypsin complex distributed over the entire binding region. The new regions that account for stronger and more specific binding of SGTI to crayfish than to bovine trypsin offer new inhibitor sites to engineer in order to develop efficient and specific protease inhibitors for practical use.  相似文献   

19.
Differential scanning calorimetry of Cd(II) alkaline phosphatases   总被引:1,自引:0,他引:1  
Differential scanning calorimetry has been employed to monitor structural alterations induced in the dimeric enzyme alkaline phosphatase on binding of Cd(II) (to the metal-free apoenzyme) and phosphate (Pi) (to the Cd(II) enzyme). Cd(II) addition to the apoenzyme at pH 6.5 results in an increased transition temperature, suggesting a stabilizing effect of the bound metal ion. Two distinct structural forms of the protein are detected as discrete calorimetric transitions (Tm = 69-84 degrees C; 87-94 degrees C, respectively). Distribution of the enzyme between these forms is found to depend on the exogenous Cd(II) concentration and the protocol of Cd(II) addition. These results indicate that conversion between the conformational forms is a slow process which appears to require specific levels of metal ion site occupancy. These studies, in which the exogenous Cd(II) concentration was varied from 10(-5) M to 10(-3) M suggest a structural basis for previously observed hysteretic phenomena observed on Cd(II) binding to the enzyme. Even at a minimum stoichiometry of Cd(II) (2 eq/mol of dimer) a single equivalent of Pi is sufficient to accelerate assumption of a stabilized form of the protein (Tm = 90 degrees C). This is followed by a slow structural change paralleling the time course of formation of the functional 2 Cd(II) phosphoryl enzyme which displays two calorimetric transitions (Tm = 65 degrees C, 88 degrees C). The low temperature transition does not appear if Pi is initially present at millimolar concentrations and is abolished on addition of Pi at concentrations in excess of 0.1 mM. These observations suggest the presence of a second, distinct Pi binding site on the 2 Cd(II) phosphoryl enzyme. This is supported by the changes observed in the 31P NMR chemical shift of Pi added to comparable enzyme samples. These data, including assessment of the effect of the presence of Mg(II), are discussed in terms of the mechanism of metal ion association to the enzyme and rearrangement of bound metal ions induced by Pi binding.  相似文献   

20.
The effects of neural blockers on the pancreatic enzyme secretion in response to an intraluminal infusion of soybean trypsin inhibitor and HCl were investigated. The stimulation of pancreatic enzyme secretion upon the intraluminal infusion of soybean trypsin inhibitor was not blocked by atropine, but was completely blocked by guanethidine. The intraluminal infusion of 0.08 n HCl, which is known as a potent secretagogue of secretin, caused a rapid augmentation of trypsin output, which was not blocked by atropine or guanethidine. Preinjection of CR-1392 (1.5 mg/kg, i.p.), which is a strong cholecystokinin receptor antagonist, completely blocked the pancreatic response to soybean trypsin inhibitor, but not that to 0.08 n HCl. This inferred that guanethidine specifically suppressed the CCK-release from the small intestine.

These findings suggest that the pancreatic enzyme secretion in response to soybean trypsin inhibitor is mainly mediated by CCK, and that adrenergic modulation would be involved in the CCK-mediated pancreatic enzyme secretion in response to soybean trypsin inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号