首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutations in KIT encoding the mast/stem cell growth factor receptor (MGF) are responsible for coat color variation in domestic pigs. The dominant white phenotype is caused by two mutations, a gene duplication and a splice mutation in one of the copies leading to skipping of exon 17. Here we applied minisequencing and pyrosequencing for quantitative analysis of the number of copies with the splice form. An unexpectedly high genetic diversity was revealed in white pigs. We found four different KIT alleles in a small sample of eight Large White females used as founder animals in a wild boar intercross. A similar number of KIT alleles was found in commercial populations of white Landrace and Large White pigs. We provide evidence for at least two new KIT alleles in pigs, both with a triplication of the gene. The results imply that KIT alleles with the duplication are genetically unstable and new alleles are most likely generated by unequal crossing over. This study provides an improved method for genotyping the complicated Dominant white/KIT locus in pigs. The results also suggest that some alleles may be associated with negative pleiotropic effects on other traits.  相似文献   

2.
The Belt mutation in pigs is an allele at the Dominant white (I/KIT) locus   总被引:6,自引:0,他引:6  
A white belt is a common coat color phenotype in pigs and is determined by a dominant allele (Be). Here we present the result of a genome scan performed using a Hampshire (Belt)/Pietrain (non-Belt) backcross segregating for the white belt trait. We demonstrate that Belt maps to the centromeric region of pig Chromosome (Chr) 8 harboring the Dominant white (I/KIT) locus. Complete cosegregation between Belt and a single nucleotide polymorphism in the KIT gene was observed. Another potential candidate gene, the endothelin receptor type A gene (EDNRA), was excluded as it was assigned to a different region (SSC8q21) by FISH analysis. We argue that Belt is a regulatory KIT mutation on the basis of comparative data on mouse KIT mutants and our previous sequence analysis of the KIT coding sequence from a Hampshire pig. Quantitative PCR analysis revealed that Belt is not associated with a KIT duplication, as is the case for the Patch and Dominant white alleles. Thus, Belt is a fourth allele at the Dominant white locus, and we suggest that it is denoted I Be . Received: 5 May 1999 / Accepted: 3 August 1999  相似文献   

3.
Nucleotide sequence analysis of polymerase chain reaction products confirmed that ev 21 integrated into one of two large homologous elements on the Z chromosome of late-feathering (LF) White Leghorn chickens. Southern blots of Not I-, Nae I-, Ksp I- and Bam HI-digested DNA from early-feathering (EF) and LF White Leghorns, that had been hybridized with a probe that flanks ev 21, indicated a 180 kb duplication of an unoccupied repeat in the LF genotype of White Leghorns. A Ksp I fragment that carries ev 21 was about 32 kb smaller than the Ksp I fragment found in EF DNA. In the evolution of LF, retroviral insertion into one of two large repeats and a 32 kb deletion may have generated LF.  相似文献   

4.
We have analyzed the structure of the Shrunken (Sh) locus in a strain containing an unstable recessive mutation, sh-m5933, caused by the transposable controlling element Dissociation (Ds). We have also analyzed nine spontaneous Sh revertant alleles. The sh-m5933 allele contains a 30 kb insertion at the Sh locus, as well as a duplication that includes part of the insertion and the Sh locus sequence on the 5' side of the insertion site. The revertants continue to show Ds-mediated chromosome breakage at the Sh locus, have an intact Sh locus from which the insertion has been excised, and retain the duplication. One of the nine revertant alleles has a 2 kb deletion at the junction between the Sh locus and the insertion sequence in the duplicated segment of the locus. The revertant also shows a temporal change in the pattern of somatic chromosome breakage, implicating the junction sequence as the site of Ds-mediated chromosome breakage.  相似文献   

5.
通过利用PCR—RFLP和PCR—SSCP技术对中国地方猪种KIT基因内含子17、18的序列进行多态性分析。结果表明:内含子17上的替换突变(G→A)发生于毛色为白色的个体——白色五指山猪、大白猪、长白猪上,其基因型(AB型)频率分别为1、1和0.8;其他中国地方猪种的此基因型频率均为0。内含子18上的缺失突变(AGTT)也同样发生在上述3个猪种的白色个体中,其基因型(AA型)频率分别为1、1和0.93;而且同样在其他的地方品种中其基因型频率均为0。这充分证明KIT基因对于猪的白毛色有重要的调控作用,而且I基因座对于其他的经典遗传基因座有上位作用。另一方面,中国地方猪种荣昌猪虽然在表型上与引入猪种大白猪、长白猪相似(白毛色),但是在KIT基因上发生的突变完全不同,推测它们分别属于不同的毛色遗传体系。  相似文献   

6.
Summary The deposition of zein protein in maize endosperm is under the control of several regulatory loci. The isolation of DNA sequences corresponding to Opaque-2 (O2), one of such loci, is described in this paper. The mutable allele, o2-m5 was first induced moving the Ac transposable element present at the wx-m7 allele to the O2 locus. Genetic data suggest that a functional Ac element is responsible for the observed somatic mutability of o2-m5. The isolation of genomic clones containing flanking sequences corresponding to the O2 gene was possible by screening an o2-m5 genomic libary with a probe corresponding to internal Ac sequences usually absent in the defective element Ds. Out of 27 clones isolated with homology to the central part of Ac element, only clones 6IP and 21IP generated a 2.5 kb internal fragment size of an active Ac element when digested with PvuII restriction enzyme. A sequence representing a XhoI fragment of 0.9 kb lying, in the 6IP clone, adjacent to the Ac elements, was subcloned and utilized to prove that it corresponded to a part of the O2 gene. To obtain this information we made use of: (1) DNAs from several reversions originating from the unstable (o2mk-(r) allele, which, when digested with SstI, showed a correct 3.4 kb fragment typical of non-inserted alleles of the O2 locus; and (2) recessive alleles of the O2 locus which were devoid of a 2.0 kb mRNA, present on the contrary in the wild type and in other zein regulating mutants different from O2.This paper is dedicated to the memory of R. Marotta, who actively participated in the realization of this work  相似文献   

7.
Sequence analysis of a 237 kb genomic fragment from the central region of the MHC has revealed that the HLA-B and HLA-C genes are contained within duplicated segments peri-B (53 kb) and peri-C (48 kb), respectively, and separated by an intervening sequence (IF) of 30 kb. The peri-B and peri-C segments share at least 90% sequence homology except when interrupted by insertions/deletions including Alu, L1, an endogenous retrovirus, and pseudogenes. The sequences of peri-B, IF, and peri-C were searched for the presence of Alu elements to use as markers of evolution, chromosomal rearrangements, and polymorphism. Of 29 Alu elements, 14 were identified in peri-B, 11 in peri-C, and 4 in IF. The Alu elements in peri-B and peri-C clustered phylogenetically into two clades which were classified as ``preduplication' and ``postduplication' clades. Four Alu J elements that are shared by peri-B and peri-C and are flanked by homologous sequences in their paralogous locations, respectively, clustered into a ``preduplication' clade. By contrast, the majority of Alu elements, which are unique to either peri-B or peri-C, clustered into a postduplication clade together with the Alu consensus subfamily members ranging from platyrrhine-specific (Spqxcg) to catarrhine-specific Alu sequences (Y). The insertion of platyrrhine-specific Alu elements in postduplication locations of peri-B and peri-C implies that these two segments are the products of a duplication which occurred in primates prior to the divergence of the New World primate from the human lineage (35–44 mya). Examination of the paralogous Alu integration sites revealed that 9 of 14 postduplication Alu sequences have produced microsatellites of different length and sequence within the Alu 3′-poly A tail. The present analysis supports the hypothesis that HLA-B and HLA-C genes are products of an extended segmental duplication between 44 and 81 million years ago (mya), and that subsequent diversification of both genomic segments occurred because of the mobility and mutation of retroelements such as Alu repeats. Received: 21 May 1997 / Accepted: 9 July 1997  相似文献   

8.
Primary structure of the goat beta-globin locus control region   总被引:6,自引:0,他引:6  
The goat beta-globin cluster is composed of a triplicated four-gene set. A locus control region (LCR) containing elements homologous to 5'DNase I hypersensitive sites (HS) 1, 2, and 3 of the human beta-globin LCR has been identified at the 5' end of this locus. We determined 10.2 kb of nucleotide sequence from the goat beta-globin locus control region. Self-comparison of this sequence by dot matrix analysis revealed the presence of six complete and three incomplete artiodactyl repeats. A novel repeated element, termed D repeat, was also identified. Southern blotting analysis demonstrated that these elements exist in the goat genome as a low to medium frequency interspersed repeat family. The absence of any other large region of self-homology (direct or inverted) in the goat LCR suggests that 5'HSs 1, 2, and 3 did not arise through duplication, but rather evolved independently. By comparing goat 5'HS 1 to those of human, rabbit, and mouse, we show a greater than 80% conservation in sequence between the four species. This level of evolutionary conservation suggests that 5'HS 1 plays an important role in the regulation of beta-globin loci.  相似文献   

9.
We have examined the phenotype of different KIT genotypes with regard to coat colour and several blood parameters (erythrocyte numbers and measures, total and differential leucocyte numbers, haematocrit and haemoglobin levels and serum components). The effect of two different iron supplement regimes (one or two iron injections) on the blood parameters was also examined. For a total of 184 cross-bred piglets (different combinations of Hampshire, Landrace and Yorkshire) blood parameters were measured four times during their first month of life, and the KIT genotypes of these and 70 additional cross-bred piglets were determined. Eight different KIT genotypes were identified, which confirms the large allelic diversity at the KIT locus in commercial pig populations. The results showed that pigs with different KIT genotypes differ both in coat colour and in haematological parameters. In general, homozygous Dominant white (I/I) piglets had larger erythrocytes with lower haemoglobin concentration, indicating a mild macrocytic anaemia. The effect of two compared with one iron injection was also most pronounced for the I/I piglets.  相似文献   

10.
Gasper JS  Shiina T  Inoko H  Edwards SV 《Genomics》2001,75(1-3):26-34
Here we present the sequence of a 45 kb cosmid containing a previously characterized poly-morphic Mhc class II B gene (Agph-DAB1) from the red-winged blackbird (Agelaius phoeniceus). We compared it with a previously sequenced cosmid from this species, revealing two regions of 7.5 kb and 13.0 kb that averaged greater than 97% similarity to each another, indicating a very recent shared duplication. We found 12 retroelements, including two chicken repeat 1 (CR1) elements, constituting 6.4% of the sequence and indicating a lower frequency of retroelements than that found in mammalian genomic DNA. Agph-DAB3, a new class II B gene discovered in the cosmid, showed a low rate of polymorphism and may be functional. In addition, we found a Mhc class II B gene fragment and three genes likely to be functional (encoding activin receptor type II, a zinc finger, and a putative gamma-filamin). Phylogenetic analysis of exon 2 alleles of all three known blackbird Mhc genes indicated strong clustering of alleles by locus, implying that large amounts of interlocus gene conversion have not occurred since these genes have been diverging. Despite this, interspecific comparisons indicate that all three blackbird Mhc genes diverged from one another less than 35 million years ago and are subject to concerted evolution in the long term. Comparison of blackbird and chicken Mhc promoter regions revealed songbird promoter elements for the first time. The high gene density of this cosmid confirms similar findings for the chicken Mhc, but the segment duplications and diversity of retroelements resembles mammalian sequences.  相似文献   

11.
Molecular characterization of the waxy locus in sorghum   总被引:1,自引:0,他引:1  
A comparison of approximately 4.5 kb of nucleotide sequence from the waxy locus (the granule-bound starch synthase I [GBSS I] locus) from a waxy line, BTxARG1, and a non-waxy line, QL39, revealed an extremely high level of sequence conservation. Among a total of 24 nucleotide differences and 9 indels, only 2 nucleotide changes resulted in altered amino acid residues. Protein folding prediction software suggested that one of the amino acid changes (Glu to His) may result in an altered protein structure, which may explain the apparently inactive GBSS I present in BTxARG1. This SNP was not found in the second waxy line, RTx2907, which does not produce GBSS I, and no other SNPs or indels were found in the approximately 4 kb of sequence obtained from RTx2907. Using one indel, the waxy locus was mapped to sorghum chromosome SBI-10, which is syntenous to maize chromosome 9; the waxy locus has been mapped to this maize chromosome. The distribution of indels in a diverse set of sorghum germplasm suggested that there are two broad types of non-waxy GBSS I alleles, each type comprising several alleles, and that the two waxy alleles in BTxARG1 and RTx2907 have evolved from one of the non-waxy allele types. The Glu/His polymorphism was found only in BTxARG1 and derived lines and has potential as a perfect marker for the BTxARG1 source of the waxy allele at the GBSS I locus. The indels correctly predicted the non-waxy phenotype in approximately 65% of diverse sorghum germplasm. The indels co-segregated perfectly with phenotype in two sorghum populations derived from crosses between a waxy and a non-waxy sorghum line, correctly identifying heterozygous lines. Thus, these indel markers or sequence-based SNP markers can be used to follow waxy alleles in sorghum breeding programs in selected pedigrees.  相似文献   

12.
Dominant white, Dun, and Smoky are alleles at the Dominant white locus, which is one of the major loci affecting plumage color in the domestic chicken. Both Dominant white and Dun inhibit the expression of black eumelanin. Smoky arose in a White Leghorn homozygous for Dominant white and partially restores pigmentation. PMEL17 encodes a melanocyte-specific protein and was identified as a positional candidate gene due to its role in the development of eumelanosomes. Linkage analysis of PMEL17 and Dominant white using a red jungle fowl/White Leghorn intercross revealed no recombination between these loci. Sequence analysis showed that the Dominant white allele was exclusively associated with a 9-bp insertion in exon 10, leading to an insertion of three amino acids in the PMEL17 transmembrane region. Similarly, a deletion of five amino acids in the transmembrane region occurs in the protein encoded by Dun. The Smoky allele shared the 9-bp insertion in exon 10 with Dominant white, as expected from its origin, but also had a deletion of 12 nucleotides in exon 6, eliminating four amino acids from the mature protein. These mutations are, together with the recessive silver mutation in the mouse, the only PMEL17 mutations with phenotypic effects that have been described so far in any species.  相似文献   

13.
Here we present the sequence of a 45 kb cosmid containing a previously characterized poly-morphic Mhc class II B gene (Agph-DAB1) from the red-winged blackbird (Agelaius phoeniceus). We compared it with a previously sequenced cosmid from this species, revealing two regions of 7.5 kb and 13.0 kb that averaged greater than 97% similarity to each another, indicating a very recent shared duplication. We found 12 retroelements, including two chicken repeat 1 (CR1) elements, constituting 6.4% of the sequence and indicating a lower frequency of retroelements than that found in mammalian genomic DNA. Agph-DAB3, a new class II B gene discovered in the cosmid, showed a low rate of polymorphism and may be functional. In addition, we found a Mhc class II B gene fragment and three genes likely to be functional (encoding activin receptor type II, a zinc finger, and a putative γ-filamin). Phylogenetic analysis of exon 2 alleles of all three known blackbird Mhc genes indicated strong clustering of alleles by locus, implying that large amounts of interlocus gene conversion have not occurred since these genes have been diverging. Despite this, interspecific comparisons indicate that all three blackbird Mhc genes diverged from one another less than 35 million years ago and are subject to concerted evolution in the long term. Comparison of blackbird and chicken Mhc promoter regions revealed songbird promoter elements for the first time. The high gene density of this cosmid confirms similar findings for the chicken Mhc, but the segment duplications and diversity of retroelements resembles mammalian sequences.  相似文献   

14.
DNA duplication associated with Charcot-Marie-Tooth disease type 1A.   总被引:72,自引:0,他引:72  
Charcot-Marie-tooth disease type 1A (CMT1A) was localized by genetic mapping to a 3 cM interval on human chromosome 17p. DNA markers within this interval revealed a duplication that is completely linked and associated with CMT1A. The duplication was demonstrated in affected individuals by the presence of three alleles at a highly polymorphic locus, by dosage differences at RFLP alleles, and by two-color fluorescence in situ hybridization. Pulsed-field gel electrophoresis of genomic DNA from patients of different ethnic origins showed a novel SacII fragment of 500 kb associated with CMT1A. A severely affected CMT1A offspring from a mating between two affected individuals was demonstrated to have this duplication present on each chromosome 17. We have demonstrated that failure to recognize the molecular duplication can lead to misinterpretation of marker genotypes for affected individuals, identification of false recombinants, and incorrect localization of the disease locus.  相似文献   

15.
Expressed sequence tags (ESTs) can be used to identify microsatellite markers. We developed 81 polymorphic microsatellite markers from 4,940 ESTs of the olive flounder, Paralichthys olivaceus. Out of 100 EST-derived microsatellites for which PCR primers were designed, 81 loci were polymorphic in 30 individuals from a single natural population with 2–28 (mean 10.6) alleles per locus. The observed and expected heterozygosities of these loci were 0.033–1.000 and 0.033–0.965, respectively. Segregation analysis within a mapping family revealed non-amplifying null alleles at five loci. These new EST-derived microsatellite markers should be useful for population genetic analyses, pedigree tracing and constructing a linkage map for olive flounder.  相似文献   

16.
Evidence for an HLA-C-like locus in the orangutan Pongo pygmaeus   总被引:1,自引:0,他引:1  
HLA-B and C are related class I genes which are believed to have arisen by duplication of a common ancestor. Previous study showed the presence of orthologues for both HLA-B and C in African apes but only for HLA-B in Asian apes. These observations suggested that the primate C locus evolved subsequent to the divergence of the Pongidae and Hominidae. From an analysis of orangutan Tengku two HLA-C-like alleles (Popy C*0101 and Popy C*0201) were defined as well as three HLA-B-like (Popy-B) alleles. By contrast, no Popy-C alleles were obtained from orangutan Hati, although three Popy-B alleles were defined. Thus an HLA-C-like locus exists in the orangutan (as well as a duplicated B locus), implying that the primate C locus evolved prior to the divergence of the Pongidae and Hominidae and is at least 12–13 million years old. Uncertain is whether all orangutan MHC haplotypes contain a C locus, as the failure to find C alleles in some individuals could be due to a mispairing of HLA-C-specific primers with certain Popy-C alleles. These results raise the possibilities that other primate species have a C locus and that the regulation of natural killer cells by C allotypes evolved earlier in primate evolution than has been thought. Received: 18 January 1999 / Revised: 23 March 1999  相似文献   

17.
18.
The evolutionary dynamics of the tetra-nucleotide microsatellite locus Spl-106 were investigated at the repeat and flanking sequences in 137 individuals of 15 Acipenseriform species, giving 93 homologous sequences, which were detected in 11 out of 15 species. Twenty-three haplotypes of flanking sequences and three distinct types of repeats, type I, type II and type III, were found within these 93 sequences. The MS-Align phylogenetic method, newly applied to microsatellite sequences, permitted us to understand the repeat and flanking sequence evolution of Spl-106 locus. The flanking region of locus Spl-106 was highly conserved among the species of genera Acipenser, Huso and Scaphirhynchus, which diverged about 150 million years ago (Mya). The rate of flanking sequence divergence at the microsatellite locus Spl-106 in sturgeons is between 0.011% and 0.079% with an average at 0.028% per million years. Sequence alignment and phylogenetic trees produced by MS-Align showed that both the flanking and repeat regions can cluster the alleles of different species into Pacific and Atlantic lineages. Our results show a synchronous evolutionary pattern between the flanking and repeat regions. Moreover, the coexistence of different repeat types in the same species, even in the same individual, is probably due to two duplication events encompassing the locus Spl-106 that occurred during the divergence of Pacific lineage. The first occured before the diversification of Pacific species (121–96 Mya) and led to repeat types I and II. The second occurred more recently, just before the speciation of A. sinensis and A. dabryanus (69–10 Mya), and led to repeat type III. Sequences in the same species with different repeat types probably corresponds to paralogous loci. This study sheds a new light on the evolutionary mechanisms that shape the complex microsatellite loci involving different repeat types.  相似文献   

19.
We have investigated the frequency distribution, across a broad range of geographically dispersed populations, of alleles of the polymorphic Alu insertion that occurs within the 8th intron of the tissue plasminogen activator gene (PLAT). This Alu is a member of a recently derived subfamily of Alu elements that has been expanding during human evolution and continues to be transpositionally active. We used a “population tube” approach to screen 10 chromosomes from each of 19 human populations for presence or absence of this Alu in the PLAT locus and found that all tested populations are dimorphic for presence/absence of this insertion. We show that the previously published EcoRI, HincII, PstI, TaqI, and XmnI polymorphisms at the PLAT locus all result from insertion of this Alu and we use both restriction fragment length polymorphism and polymerase chain reaction analysis to examine the frequency of Alu(+) and Alu(–) alleles in a sample of 1003 individuals from 27 human populations and in 38 nonhuman primates. Nonhuman primates are monomorphic for the Alu(–) allele. Human populations differ substantially in allele frequency, and in several populations both alleles are common. Our results date the insertion event prior to the spread and diversification of modern humans. Received: 10 July 1995 / Revised: 17 November 1995  相似文献   

20.
In this study, we report results of the detection and analysis of SSR markers derived of cacao–Moniliophthora perniciosa expressed sequence tags (ESTs) in relation to cacao resistance to witches’ broom disease (WBD), and we compare the polymorphism of those ESTs (EST-simple sequence repeat (SSR)) with classical neutral SSR markers. A total of 3,487 ESTs was used in this investigation. SSRs were identified in 430 sequences: 277 from the resistant genotype TSH 1188 and 153 from the susceptible one Catongo, totalizing 505 EST-SSRs with three types of motifs: dinucleotides (72.1%), trinucleotides (27.3%), and tetranucleotides (0.6%). EST-SSRs were classified into 16 main categories; most of the EST-SSRs belonged to “Unknown function” and “No homology” categories (45.82%). A high frequency of SSRs was found in the 5’UTR and in the ORF (about 27%) and a low frequency was observed in the 3’UTR (about 8%). Forty-nine EST-SSR primers were designed and evaluated in 21 cacao accessions, 12 revealed polymorphism, having 47 alleles in total, with an average of 3.92 alleles per locus. On the other hand, the 11 genomic SSR markers revealed a total of 47 alleles, with an average of 5.22 alleles per locus. The association of EST-SSR with the genomic SSR enhanced the analysis of genetic distance among the genotypes. Among the 12 polymorphic EST-SSR markers, two were mapped on the F2 Sca 6 × ICS 1 population reference for WBD resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号