首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We describe here a protocol for culturing epicardial cells from adult zebrafish hearts, which have a unique regenerative capacity after injury. Briefly, zebrafish hearts first undergo ventricular amputation or sham operation. Next, the hearts are excised and explanted onto fibrin gels prepared in advance in a multiwell tissue culture plate. The procedure allows the epicardial cells to outgrow from the ventricle onto a fibrin matrix in vitro. This protocol differs from those used in other organisms by using a fibrin gel to mimic blood clots that normally form after injury and that are essential for proper cell migration. The culture procedure can be accomplished within 5 h; epicardial cells can be obtained within 24-48 h and can be maintained in culture for 5-6 d. This protocol can be used to investigate the mechanisms underlying epicardial cell migration, proliferation and epithelial-to-mesenchymal transition during heart regeneration, homeostatic cardiac growth or other physiological processes.  相似文献   

2.
Development of a functional organ requires the establishment of its proper size as well as the establishment of the relative proportions of its individual components. In the zebrafish heart, organ size and proportion depend heavily on the number of cells in each of its two major chambers, the ventricle and the atrium. Heart size and chamber proportionality are both affected in zebrafish fgf8 mutants. To determine when and how FGF signaling influences these characteristics, we examined the effect of temporally controlled pathway inhibition. During cardiac specification, reduction of FGF signaling inhibits formation of both ventricular and atrial cardiomyocytes, with a stronger impact on ventricular cells. After cardiomyocyte differentiation begins, reduction of FGF signaling can still result in a deficiency of ventricular cardiomyocytes. Consistent with two temporally distinct roles for FGF, we find that increased FGF signaling induces a cardiomyocyte surplus only before cardiac differentiation begins. Thus, FGF signaling first regulates heart size and chamber proportionality during cardiac specification and later refines ventricular proportion by regulating cell number after the onset of differentiation. Together, our data demonstrate that a single signaling pathway can act reiteratively to coordinate organ size and proportion.  相似文献   

3.
Cardiomyocyte hypertrophy is a complex cellular behavior involving coordination of cell size expansion and myofibril content increase. Here, we investigate the contribution of cardiomyocyte hypertrophy to cardiac chamber emergence, the process during which the primitive heart tube transforms into morphologically distinct chambers and increases its contractile strength. Focusing on the emergence of the zebrafish ventricle, we observed trends toward increased cell surface area and myofibril content. To examine the extent to which these trends reflect coordinated hypertrophy of individual ventricular cardiomyocytes, we developed a method for tracking cell surface area changes and myofibril dynamics in live embryos. Our data reveal a previously unappreciated heterogeneity of ventricular cardiomyocyte behavior during chamber emergence: although cardiomyocyte hypertrophy was prevalent, many cells did not increase their surface area or myofibril content during the observed timeframe. Despite the heterogeneity of cell behavior, we often found hypertrophic cells neighboring each other. Next, we examined the impact of blood flow on the regulation of cardiomyocyte behavior during this phase of development. When blood flow through the ventricle was reduced, cell surface area expansion and myofibril content increase were both dampened, and the behavior of neighboring cells did not seem coordinated. Together, our studies suggest a model in which hemodynamic forces have multiple influences on cardiac chamber emergence: promoting both cardiomyocyte enlargement and myofibril maturation, enhancing the extent of cardiomyocyte hypertrophy, and facilitating the coordination of neighboring cell behaviors.  相似文献   

4.
Unlike its mammalian counterpart, the adult zebrafish heart is able to fully regenerate after severe injury. One of the most important events during the regeneration process is cardiomyocyte proliferation, which results in the replacement of lost myocardium. Growth factors that induce cardiomyocyte proliferation during zebrafish heart regeneration remain to be identified. Signaling pathways important for heart development might be reutilized during heart regeneration. IGF2 was recently shown to be important for cardiomyocyte proliferation and heart growth during mid-gestation heart development in mice, although its role in heart regeneration is unknown. We found that expression of igf2b was upregulated during zebrafish heart regeneration. Following resection of the ventricle apex, igf2b expression was detected in the wound, endocardium and epicardium at a time that coincides with cardiomyocyte proliferation. Transgenic zebrafish embryos expressing a dominant negative form of Igf1 receptor (dn-Igf1r) had fewer cardiomyocytes and impaired heart development, as did embryos treated with an Igf1r inhibitor. Moreover, inhibition of Igf1r signaling blocked cardiomyocyte proliferation during heart development and regeneration. We found that Igf signaling is required for a subpopulation of cardiomyocytes marked by gata4:EGFP to contribute to the regenerating area. Our findings suggest that Igf signaling is important for heart development and myocardial regeneration in zebrafish.  相似文献   

5.
The regulation of cardiomyocyte proliferation is important for heart development and regeneration. The proliferation patterns of cardiomyocytes are closely related to heart morphogenesis, size, and functions. The proliferation levels are high during early embryogenesis; however, mammalian cardiomyocytes exit the cell cycle irreversibly soon after birth. The cell cycle exit inhibits cardiac regeneration in mammals. On the other hand, cardiomyocytes of adult zebrafish and probably newts can proliferate after cardiac injury, and the hearts can be regenerated. Therefore, the ability to reproliferate determines regenerative ability. As in other cells, the relationship between proliferation and differentiation is very interesting, and is closely related to cardiac development, regeneration and homeostasis. In this review, these topics are discussed.  相似文献   

6.
Zebrafish and Xenopus have become popular model organisms for studying vertebrate development of many organ systems, including the heart. However, it is not clear whether the single ventricular hearts of these species possess any equivalent of the specialized ventricular conduction system found in higher vertebrates. Isolated hearts of adult zebrafish (Danio rerio) and African toads (Xenopus laevis) were stained with voltage-sensitive dye and optically mapped in spontaneous and paced rhythms followed by histological examination focusing on myocardial continuity between the atrium and the ventricle. Spread of the excitation wave through the atria was uniform with average activation times of 20 +/- 2 and 50 +/- 2 ms for zebrafish and Xenopus toads, respectively. After a delay of 47 +/- 8 and 414 +/- 16 ms, the ventricle became activated first in the apical region. Ectopic ventricular activation was propagated significantly more slowly (total ventricular activation times: 24 +/- 3 vs. 14 +/- 2 ms in zebrafish and 74 +/- 14 vs. 35 +/- 9 ms in Xenopus). Although we did not observe any histologically defined tracts of specialized conduction cells within the ventricle, there were trabecular bands with prominent polysialic acid-neural cell adhesion molecule staining forming direct myocardial continuity between the atrioventricular canal and the apex of the ventricle; i.e., the site of the epicardial breakthrough. We thus conclude that these hearts are able to achieve the apex-to-base ventricular activation pattern observed in higher vertebrates in the apparent absence of differentiated conduction fascicles, suggesting that the ventricular trabeculae serve as a functional equivalent of the His-Purkinje system.  相似文献   

7.
Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular myocardium triggered signs of cardiac failure that were not observed after partial ventricular resection, including reduced animal exercise tolerance and sudden death in the setting of stressors. Massive myocardial loss activated robust cellular and molecular responses by endocardial, immune, epicardial and vascular cells. Destroyed cardiomyocytes fully regenerated within several days, restoring cardiac anatomy, physiology and performance. Regenerated muscle originated from spared cardiomyocytes that acquired ultrastructural and electrophysiological characteristics of de-differentiation and underwent vigorous proliferation. Our study indicates that genetic depletion of cardiomyocytes, even at levels so extreme as to elicit signs of cardiac failure, can be reversed by natural regenerative capacity in lower vertebrates such as zebrafish.  相似文献   

8.
In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart.  相似文献   

9.
10.
The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease.  相似文献   

11.
The Neuregulin‐1 (Nrg1)/ErbB pathway plays multiple, critical roles in early cardiac and nervous system development and has been implicated in both heart and nerve repair processes. However, the early embryonic lethality of mouse Nrg1 mutants precludes an analysis of Nrg1's function in later cardiac development and homeostasis. In this study, we generated a novel nrg1 null allele targeting all known isoforms of nrg1 in zebrafish and examined cardiac structural and functional parameters throughout development. We found that zebrafish nrg1 mutants instead survived until young adult stages when they exhibited reduced survivorship. This coincided with structural and functional defects in the developing juvenile and young adult hearts, as demonstrated by reduced intracardiac myocardial density, cardiomyocyte cell number, swimming performance and dysregulated heartbeat. Interestingly, nrg1 mutant hearts were missing long axons on the ventricle surface by standard length (SL) 5 mm, which preceded juvenile and adult cardiac defects. Given that the autonomic nervous system normally exerts fine control of cardiac output through this nerve plexus, these data suggest that Nrg1 may play a critical role in establishing the cardiac nerve plexus such that inadequate innervation leads to deficits in cardiac maturation, function and survival.  相似文献   

12.
The function of an organ relies upon the proper relative proportions of its individual operational components. For example, effective embryonic circulation requires the appropriate relative sizes of each of the distinct pumps created by the atrial and ventricular cardiac chambers. Although the differences between atrial and ventricular cardiomyocytes are well established, little is known about the mechanisms regulating production of proportional numbers of each cell type. We find that mutation of the zebrafish type I BMP receptor gene alk8 causes reduction of atrial size without affecting the ventricle. Loss of atrial tissue is evident in the lateral mesoderm prior to heart tube formation and results from the inhibition of BMP signaling during cardiac progenitor specification stages. Comparison of the effects of decreased and increased BMP signaling further demonstrates that atrial cardiomyocyte production correlates with levels of BMP signaling while ventricular cardiomyocyte production is less susceptible to manipulation of BMP signaling. Additionally, mosaic analysis provides evidence for a cell-autonomous requirement for BMP signaling during cardiomyocyte formation and chamber fate assignment. Together, our studies uncover a new role for BMP signaling in the regulation of chamber size, supporting a model in which differential reception of cardiac inductive signals establishes chamber proportion.  相似文献   

13.
Developing organs acquire a specific three-dimensional form that ensures their normal function. Cardiac function, for example, depends upon properly shaped chambers that emerge from a primitive heart tube. The cellular mechanisms that control chamber shape are not yet understood. Here, we demonstrate that chamber morphology develops via changes in cell morphology, and we determine key regulatory influences on this process. Focusing on the development of the ventricular chamber in zebrafish, we show that cardiomyocyte cell shape changes underlie the formation of characteristic chamber curvatures. In particular, cardiomyocyte elongation occurs within a confined area that forms the ventricular outer curvature. Because cardiac contractility and blood flow begin before chambers emerge, cardiac function has the potential to influence chamber curvature formation. Employing zebrafish mutants with functional deficiencies, we find that blood flow and contractility independently regulate cell shape changes in the emerging ventricle. Reduction of circulation limits the extent of cardiomyocyte elongation; in contrast, disruption of sarcomere formation releases limitations on cardiomyocyte dimensions. Thus, the acquisition of normal cardiomyocyte morphology requires a balance between extrinsic and intrinsic physical forces. Together, these data establish regionally confined cell shape change as a cellular mechanism for chamber emergence and as a link in the relationship between form and function during organ morphogenesis.  相似文献   

14.
Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.  相似文献   

15.
16.
The proepicardial-derived epicardium covers the myocardium and after a process of epithelial–mesenchymal transition (EMT) forms epicardium-derived cells (EPDCs). These cells migrate into the myocardium and show an essential role in the induction of the ventricular compact myocardium and the differentiation of the Purkinje fibres. EPDCs are furthermore the source of the interstitial fibroblast, the coronary smooth muscle cell and the adventitial fibroblast. The possible differentiation into cardiomyocytes, endothelial cells and the recently described telocyte and other cells in the cardiac stem cell niche needs further investigation. Surgically or genetically disturbed epicardial and EPDC differentiation leads to a spectrum of abnormalities varying from thin undifferentiated myocardium, which can be embryonic lethal, to a diminished coronary vascular bed with even absent main coronary arteries. The embryonic potential of EPDCs has been translated to both structural and functional congenital malformations and adult cardiac disease, like development of Ebstein’s malformation, arrhythmia and cardiomyopathies. Furthermore, the use of adult EPDCs as a stem cell source has been explored, showing in an animal model of myocardial ischemia the recapitulation of the embryonic program with improved function, angiogenesis and less adverse remodeling. Combining EPDCs and adult cardiomyocyte progenitor cells synergistically improved these results. The contribution of injected EPDCs was instructive rather than constructive. The finding of reactivation of the endogenous epicardium in ischemia with re-expression of developmental genes and renewed EMT marks the onset of a novel therapeutic focus.  相似文献   

17.
Unlike adult mammals, adult zebrafish vigorously regenerate lost heart muscle in response to injury. The epicardium, a mesothelial cell layer enveloping the myocardium, is activated to proliferate after cardiac injury and can contribute vascular support cells or provide mitogens to regenerating muscle. Here, we applied proteomics to identify secreted proteins that are associated with heart regeneration. We found that Fibronectin, a main component of the extracellular matrix, is induced and deposited after cardiac damage. In situ hybridization and transgenic reporter analyses indicated that expression of two fibronectin paralogues, fn1 and fn1b, are induced by injury in epicardial cells, while the itgb3 receptor is induced in cardiomyocytes near the injury site. fn1, the more dynamic of these paralogs, is induced chamber-wide within one day of injury before localizing epicardial Fn1 synthesis to the injury site. fn1 loss-of-function mutations disrupted zebrafish heart regeneration, as did induced expression of a dominant-negative Fibronectin cassette, defects that were not attributable to direct inhibition of cardiomyocyte proliferation. These findings reveal a new role for the epicardium in establishing an extracellular environment that supports heart regeneration.  相似文献   

18.

Aims

While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters.

Methods and Results

Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored.

Conclusion

Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models.  相似文献   

19.
20.
Cardiac trabeculation is a crucial morphogenetic process by which clusters of ventricular cardiomyocytes extrude and expand into the cardiac jelly to form sheet-like projections. Although it has been suggested that cardiac trabeculae enhance cardiac contractility and intra-ventricular conduction, their exact function in heart development has not been directly addressed. We found that in zebrafish erbb2 mutants, which we show completely lack cardiac trabeculae, cardiac function is significantly compromised, with mutant hearts exhibiting decreased fractional shortening and an immature conduction pattern. To begin to elucidate the cellular mechanisms of ErbB2 function in cardiac trabeculation, we analyzed erbb2 mutant hearts more closely and found that loss of ErbB2 activity resulted in a complete absence of cardiomyocyte proliferation during trabeculation stages. In addition, based on data obtained from proliferation, lineage tracing and transplantation studies, we propose that cardiac trabeculation is initiated by directional cardiomyocyte migration rather than oriented cell division, and that ErbB2 cell-autonomously regulates this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号