首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNA(Ile) genes between the 16S and 23S rDNAs, and the other had a tRNA(Ile) genes between the 16S and 23S rDNAs and a tRNA(Asn) gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

2.
In Escherichia coli, ribosomal RNAs (16S, 23S and 5S) are co-transcribed in a highly regulated manner from seven genomically dispersed operons. Previous studies on the cellular effects of altered levels of two of these rRNAs (16S and 23S) have been useful in better understanding the regulation of rRNA expression. Furthering these studies, we have investigated the effect of 5S rRNA deficiencies on cell fitness through the sequential deletion of 5S rRNA genes. Our findings indicate that the loss of 5S rDNA from multiple genes decreases cell fitness more rapidly than loss of a similar number of 16S and 23S rRNA genes. These results suggest that the cell's innate ability to up-regulate rRNA operons does not compensate for 5S rRNA deficiencies, as was previously shown for 16S and 23S rRNAs. A plasmid-borne 5S rRNA gene is able to compensate for the deleted 5S rRNA genes.  相似文献   

3.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNAIle genes between the 16S and 23S rDNAs, and the other had a tRNAIle genes between the 16S and 23S rDNAs and a tRNAAsn gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

4.
Summary Chromosomal segments of Rhodopseudomonas capsulata carrying the ribosomal operons and cloned with the cosmid vector pHC79 have been identified by cross hybridization with 32P-ATP labeled rRNAs. At least seven rRNA operons are present in the R. capsulata chromosome. By R-loop analyses of DNA-RNA hybrids, two distinct loop structures of sizes 1.50 kb and 2.52 kb corresponding to the 16S and 23S RNA molecules, respectively, were detected. Intact 23S RNA molecules can be isolated from R. capsulata ribosomes by sucrose density centrifugation. However, fragmentation of the 23S RNA molecule into a 16S-like molecule was observed during gel electrophoresis. Restriction mapping and hybridization of a 9 kb PstI fragment that contained one copy of the rRNA operon showed the following sequence of the RNA genes in R. capsulata 16S, 23S, and 5S. A spacer region of 0.91 kb was found between the 16S and the 23S RNA genes.  相似文献   

5.
Rhodopseudomonas palustris strains carry one or two ribosomal rRNA operons, and those with duplicated rrn operons grow faster. The two rrn operons in R. palustris No. 7 are virtually identical over a 54,70-bp stretch containing the genes for 16S rRNA, tRNAile, tRNAala, 23S rRNA and 5S rRNA, as well as the intergenic spacers and part of the extragenic spacer. In R. palustris, unlike most bacteria with multiple rrn operons, the putative promoter sequences of the two operons are highly diverged, suggesting possible functional differentiation. By simultaneous primer-extension analysis of both pre-rRNAs, we detected a two-fold higher level of expression from rrnA under photoautotrophic conditions. Alteration of the conditions of growth leads to changes in the relative levels of expression of the two operons. Within the 5,470-bp segment, only two sequence differences are found between the 23S rRNA genes; one is at the center of the 23S rRNA molecule and affects a site of unknown function, and the other is within or immediately adjacent to sequences involved in processing of the 5' 23S rRNA IVS. In vitro processing of 5' IVS-containing 23S rRNA precursors from each operon does not reveal any detectable difference between them. The 5' ends of the mature 16S, 23S, and 5S rRNAs were determined by primer-extension analysis, and the 3' end of 23S rRNA was determined by RNA linker ligation-mediated cDNA cloning. The 5' and 3' ends of the R. palustris 23S rRNA molecule are extensively processed, suggesting that, unlike the situation in the established eubacterial model, these ends cannot basepair.  相似文献   

6.
Organization of rRNA genes in Mycobacterium bovis BCG.   总被引:24,自引:9,他引:15       下载免费PDF全文
The number of rRNA genes in Mycobacterium bovis BCG was examined by Southern hybridization of end-labeled 5S, 16S, and 23S rRNAs with BamHI, PstI, and SalI digests of M. bovis BCG DNA. Each RNA probe gave only one radioactive band with three kinds of DNA digest. These results suggest that M. bovis BCG chromosomes may carry only a minimum set of rRNA genes. Hybridization of randomly labeled rRNAs with BamHI, PstI, SalI, BglII, and PvuII digests of DNA from the same organism supported these conclusions. The 6.4-kilobase-pair SalI fragment containing the entire structural genes for both 16S and 23S rRNAs was cloned into pBR322. The cloned fragment was characterized by restriction endonuclease mapping, DNA-RNA hybridization analysis, and the R-loop technique. The results indicated that the fragments contained rRNA genes in the following order: 16S, 23S, and 5S rRNA genes. No tRNA gene was detected in the spacer region between the 16S and 23S rRNA genes, but one was found downstream of the 23S rRNA and 5S rRNA genes.  相似文献   

7.
8.
Characterization of Paenibacillus popilliae rRNA operons   总被引:1,自引:0,他引:1  
The terminal 39 nucleotides on the 3' end of the 16S rRNA gene, along with the complete DNA sequences of the 5S rRNA, 23S rRNA, tRNA(Ile), and tRNA(Ala) genes were determined for Paenibacillus popilliae using strains NRRL B-2309 and Dutky 1. Southern hybridization analysis with a 16S rDNA hybridization probe and restriction-digested genomic DNA demonstrated 8 copies of the 16S rRNA gene in P. popilliae strains KLN 3 and Dutky 1. Additionally, the 23S rRNA gene in P. popilliae strains NRRL B-2309, KLN 3, and Dutky 1 was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to occur as 8 copies. It was concluded that these 3 P. popilliae strains contained 8 rrn operons. The 8 operon copies were preferentially located on approximately one-half of the chromosome and were organized into 3 different patterns of genes, as follows: 16S-23S-5S, 16S-ala-23S-5S, and 16S-5S-ile-ala-23S-5S. This is the first report to identify a 5S rRNA gene between the 16S and 23S rRNA genes of a bacterial rrn operon. Comparative analysis of the nucleotides on the 3' end of the 16S rRNA gene suggests that translation of P. popilliae mRNA may occur in Bacillus subtilis and Escherichia coli.  相似文献   

9.
10.
Analysis of rRNA genes in Vibrio fischeri indicates the presence of eight rRNA gene sets in this organism. It was found that the genes for 5S rRNA, 16S rRNA, and 23S rRNA are organized in operons in the following order: 5' end 16S rRNA 23S RNA 5S rRNA 3' end. Although the operons are homologous, they are not identical with regard to cleavage sites for various restriction endonucleases. A DNA library was constructed, and three ribosomal DNA clones were obtained. One of these clones contained an entire rRNA operon and was used as a source for subcloning. The promoter region which leads to plasmid instability was successfully subcloned into pHG165. The terminator region was subcloned into pBR322.  相似文献   

11.
The number of ribosomal RNA genes in Thermus thermophilus HB8.   总被引:7,自引:1,他引:6       下载免费PDF全文
We have examined the number of rRNA genes in Thermus thermophilus HB8 by hybridization of Bam HI -, Hind III - and Pst I - digests of DNA to 3'- (3 2p) 23S, 16S and 5S rRNAs according to the Southern procedure. The restriction gels gave two radioactive bands with 23S and 5S rRNA. Furthermore, band positions were indistinguishable from one another when 23S and 5S rRNAs were used as probes to Bam HI and Hind III digests, indicating that each band contains sequences corresponding to the 3'-end of 23S and 5S rRNAs. The Pst I digest also gave two radioactive bands with 23S and 5S rRNAs as probes, where one band position was identical, but the other different. The 16S rRNA did hybridize with two fragments, using a Bam HI, as well as a Bam HI - Hind III double digest. The Hind III digest gave one band using 16S rRNA as a probe. It is concluded that the Thermus thermophilus HB8 chromosome carries at least two sets of genes for 23S, 16S and 5S rRNAs.  相似文献   

12.
Some rRNA operons in E. coli have tRNA genes at their distal ends.   总被引:25,自引:0,他引:25  
We have previously isolated seven rRNA operons on plasmids or lambda transducing phages and identified various tRNAs encoded by these operons. Each of the seven operons has one of two different spacer tRNA gene arrangements between the genes for 16S and 23S rRNA: either tRNAGlu2 or both tRNAIle1 and tRNAAla1B genes. In addition, various tRNA genes are located at or near the distal ends of rRNA operons. In particular, genes for tRNATrp and tRNAAsp1 are located at the distal end of rrnC at 83 min on the E. coli chromosome. Experiments with various hybrid plasmids, some of which lack the rRNA promoter, have now demonstrated that this promoter is necessary for expression of the distal tRNA genes. Rifampicin run-out experiments have also provided evidence that the tRNATrp gene is located farther from its promoter than the spacer tRNA gene or the 5S RNA gene. These results confirm the localization of genes for tRNATrp and tRNAAsp1 at the distal end of rrnC and strongly suggest that they are co-transcribed with the genes for 16S, tRNAGlu2, 23S and 5S RNA. Other such distal tRNAs have been identified, and it is suggested that they too are part of rRNA operons.  相似文献   

13.
Annotation of rRNA genes has been incomplete in Agrobacterium species although a number of Agrobacterial rDNA fragments have been sequenced. In this study, precise characterization of rRNA operons (rrn) was carried out in two biovar 1 strains, C58 and MAFF301001. Complete DNA sequencing of four rrns in MAFF301001 indicated that each operon codes for 16S, 23S and 5S rRNA as well as three tRNAs, trn(Ile), trn(Ala) and trn(Met). The genes and 16S-23S ITS of a given locus were exactly identical with those in the other three loci, except for a T-base loss in the 23S rRNA gene of rrnA and in the 5S rRNA gene of rrnB. Comparison with the four C58 rDNAs available in the DNA database indicated extensive sequence and size variations in the 23S rRNA gene, suggesting the presence of an intervening sequence (IVS). Biochemical RNA analysis, including Northern hybridization and 5' end mapping, in MAFF301001 revealed 2886-base and 2571-base precursors, two 1.3-kb major fragments, a 150-base fragment and removal of an IVS for 23S rRNA. We confirmed similar biochemical characteristics in the C58 strain. The features of rDNA detected here enable correction of previously reported information about Agrobacterial rRNAs and rRNA genes and should be useful for phylogenetic considerations.  相似文献   

14.
Ribosomal RNAs (rRNAs), assisted by ribosomal proteins, form the basic structure of the ribosome, and play critical roles in protein synthesis. Compared to prokaryotic ribosomes, eukaryotic ribosomes contain elongated rRNAs with several expansion segments and larger numbers of ribosomal proteins. To investigate architectural evolution and functional capability of rRNAs, we employed a Tn5 transposon system to develop a systematic genetic insertion of an RNA segment 31 nt in length into Escherichia coli rRNAs. From the plasmid library harboring a single rRNA operon containing random insertions, we isolated surviving clones bearing rRNAs with functional insertions that enabled rescue of the E. coli strain (Δ7rrn) in which all chromosomal rRNA operons were depleted. We identified 51 sites with functional insertions, 16 sites in 16S rRNA and 35 sites in 23S rRNA, revealing the architecture of E. coli rRNAs to be substantially flexible. Most of the insertion sites show clear tendency to coincide with the regions of the expansion segments found in eukaryotic rRNAs, implying that eukaryotic rRNAs evolved from prokaryotic rRNAs suffering genetic insertions and selections.  相似文献   

15.
Saito R  Ozawa Y  Kuzuno N  Tomita M 《Gene》2000,259(1-2):217-222
The processing of 16S rRNA and 23S rRNA by RNase III in E.coli is known to involve stem structures formed by both ends of the rRNA. Indeed, complementary nucleotide sequences are usually found at both ends of 16S rRNA and 23S rRNA. However, whether or not this phenomenon exists in various other bacteria has not yet been adequately studied. We have conducted computer analyses of potential stem structures of rRNA operons in 12 bacterial and 3 archaeal genomes, and compared characteristics of the stem structures among these species. We systematically computed free energy values by exhaustively 'annealing' sequences around the 5' end and sequences around the 3' end of both 16S rRNA and 23S rRNA genes, in order to predict potential stem structures.The results suggest that rRNAs in most species form stem structures at both ends. Some species, such as A.aeolicus, seem to form unusually stable stem structures. On the other hand, some rRNAs, such as rRNAs of D.radiodurans, seem not to form solid stem structures. This suggests that rRNA processing in those species must employ a reliable targeting mechanism other than recognizing stem structures by RNase III.  相似文献   

16.
W H Yap  Y Wang 《Gene》1999,232(1):77-85
The genome of Streptomyces nodosus contains six ribosomal RNA (rRNA) operons. Four of the rRNA operons; rrnB, rrnD, rrnE and rrnF were cloned. We have completely sequenced all four operons, including a region 750 base pairs (bp) upstream of the 16S rRNA gene. The three rRNA genes present in each operon were closely linked in the order 16S-23S-5S. A sequence comparison of the four operons showed more than 99% sequence similarity between the corresponding 16S and 23S rRNA genes, and more than 97% similarity between 5S rRNA genes. The sequence differences observed between 23S rRNA genes appeared to be localized in two specific regions. Substantial sequence differences were found in the region upstream of the 16S rRNA gene as well as in the internal transcribed spacers. No tRNA gene was found in the 16S-23S spacer regions.  相似文献   

17.
18.
Y Suzuki  Y Ono  A Nagata    T Yamada 《Journal of bacteriology》1988,170(4):1631-1636
The number of rRNA genes in Streptomyces lividans was examined by Southern hybridization. Randomly labeled 23 and 16S rRNAs were hybridized with BamHI, BglII, PstI, SalI, or XhoI digests of S. lividans TK21 DNA. BamHi, BglII, SalI and XhoI digests yielded six radioactive bands each for the 23 and 16S rRNAs, whereas PstI digests gave one band for the 23S rRNA and one high-intensity band and six low-density bands for the 16S rRNA. The 7.4-kilobase-pair BamHI fragment containing one of the rRNA gene clusters was cloned into plasmid pBR322. The hybrid plasmid, pSLTK1, was characterized by physical mapping, Southern hybridization, and electron microscopic analysis of the R loops formed between pSLTK1 and the 23 and 16S rRNAs. There were at least six rRNA genes in S. lividans TK21. The 16 and 23S rRNA genes were estimated to be about 1.40 and 3.17 kilobase pairs, respectively. The genes for the rRNAs were aligned in the sequence 16S-23S-5S. tRNA genes were not found in the spacer region or in the context of the rRNA genes. The G + C content of the spacer region was calculated to be approximately 58%, in contrast to 73% for the chromosome as a whole.  相似文献   

19.
The number of ribosomal RNA genes in Mycoplasma capricolum   总被引:13,自引:0,他引:13  
Summary We have examined the number of rRNA genes in Mycoplasma capricolum (KID) by hybridization of BglII-, EcoRI- and XbaI-digests of DNA to [3-32P] 16S, 23S and 5S rRNAs according to the Southern procedure (1975). All the restriction gels gave two radioactive bands with three kinds of rRNA. Furthermore, band positions were indistinguishable from one another when 16S, 23S and 5S rRNAs were used as probes, indicating that each band contains sequences corresponding to the 3-termini of 16S, 23S and 5S rRNAs. It is thus concluded that Mycoplasma capricolum chromosome carries at least two sets of genes for 16S, 23S and 5S rRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号