首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The genetic variability of apolipoprotein E (apoE) influences plasma lipoprotein levels, and allele frequencies differ between African Americans and Caucasians. As African Americans have higher lipoprotein [a] (Lp[a]) levels than Caucasians, we investigated the effects of the apoE gene on allele-specific apolipoprotein [a] (apo[a]) levels across ethnicity. We determined apo[a] sizes, allele-specific apo[a] levels (i.e., levels associated with alleles defined by size), and the apoE gene polymorphism in 231 African Americans and 336 Caucasians. African Americans, but not Caucasians, with the apo E2 genotype had lower levels of Lp[a] compared with those with the apo E4 genotype (9.6 vs. 11.2 nmol/l; P = 0.034, expressed as square root levels). Distribution of apo[a] alleles across apoE genotypes were similar between African Americans and Caucasians. Among African Americans with large apo[a], the allele-specific apo[a] level was significantly lower among epsilon2 carriers compared with epsilon3 or epsilon4 carriers (5.4 vs. 6.6 and 7.4 nmol/l, respectively; P < 0.005, expressed as square root levels). In contrast, there was no significant difference in allele-specific apo[a] levels across apoE genotypes among Caucasians. For large apo[a] sizes, apoE genotype contributed to the observed African American-Caucasian differences in allele-specific apo[a] levels.  相似文献   

2.
Apolipoprotein[a], the highly glycosylated, hydrophilic apoprotein of lipoprotein[a] (Lp[a]), is generally considered to be a multimeric homologue of plasminogen, and to exhibit atherogenic/thrombogenic properties. The cDNA-inferred amino acid sequence of apo[a] indicates that apo[a], like plasminogen and some zymogens, is composed of a kringle domain and a serine protease domain. To gain insight into possible positive functions of Lp[a], we have examined the apo[a] primary structure by comparing its sequence with those of other proteins involved in coagulation and fibrinolysis, and its secondary structure by using a combination of structure prediction algorithms. The kringle domain encompasses 11 distinct types of repeating units, 9 of which contain 114 residues. These units, called kringles, are similar but not identical to each other or to PGK4. Each apo[a] kringle type was compared with kringles which have been shown to bind lysine and fibrin, and with bovine prothrombin kringle 1. Apo[a] kringles are linked by serine/threonine- and proline-rich stretches similar to regions in immunoglobulins, adhesion molecules, glycoprotein Ib-alpha subunit, and kininogen. In comparing the protease domains of apo[a] and plasmin, apo[a] contains a region between positions 4470 and 4492 where 8 substitutions, 9 deletions, and 1 insertion are apparent. Our analysis suggests that apo[a] kringle-type 10 has a high probability of binding to lysine in the same way as PGK4. In the only human apo[a] polymorph sequenced to date, position 4308 is occupied by serine, whereas the homologous position in plasmin is occupied by arginine and is an important site for proteolytic cleavage and activation. An alternative site for the proteolytic activation of human apo[a] is proposed.  相似文献   

3.
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis.  相似文献   

4.
In previous studies, we showed that the C-terminal domain, F2, but not the N-terminal domain, F1, is responsible for the binding of apolipoprotein [a] (apo[a]) to human fibronectin (Fn). To pursue those observations, we prepared, by both elastase digestion and recombinant technology, subsets of F2 of a different length containing either kringle (K) V or the protease domain (PD). We also studied rhesus monkey apo[a], which is known to contain PD but not KV. In the case of Fn, we used both an intact product and its tenth type III module (10FN-III) expressed in Escherichia coli. The binding studies carried out on microtiter plates showed that the affinity of F2 for immobilized 10FN-III was approximately 6-fold higher than that for Fn (dissociation constants = 1.75 +/- 0.31 nM and 10.25 +/- 1.62 nM, respectively). The binding was also exhibited by rhesus apo[a] and by an F2 subset containing the PD linked to an upstream microdomain comprising KIV-8 to KIV-10 and KV, inactive by itself. Competition experiments on microtiter plates showed that both Fn and 10FN-III, when in solution, are incompetent to bind F2. Together, our results indicate that F2 binds to immobilized 10FN-III more efficiently than whole Fn and that the binding can be sustained by truncated forms of F2 that contain the catalytically inactive PD linked to an upstream four K microdomain.  相似文献   

5.
6.
Reducing dietary saturated fatty acids (SFA) intake results in a clinically significant lowering of low-density lipoprotein cholesterol (LDL-C) across ethnicities. In contrast, dietary SFA’s role in modulating emerging cardiovascular risk factors in different ethnicities remains poorly understood. Elevated levels of lipoprotein(a) [Lp(a)], an independent cardiovascular risk factor, disproportionally affect individuals of African descent. Here, we assessed the responses in Lp(a) levels to dietary SFA reduction in 166 African Americans enrolled in GET-READI (The Gene-Environment Trial on Response in African Americans to Dietary Intervention), a randomized controlled feeding trial. Participants were fed two diets in random order for 5 weeks each: 1) an average American diet (AAD) (37% total fat: 16% SFA), and 2) a diet similar to the Dietary Approaches to Stop Hypertension (DASH) diet (25% total fat: 6% SFA). The participants’ mean age was 35 years, 70% were women, the mean BMI was 28 kg/m2, and the mean LDL-C was 116 mg/dl. Compared to the AAD diet, LDL-C was reduced by the DASH-type diet (mean change: −12 mg/dl) as were total cholesterol (−16 mg/dl), HDL-C (−5 mg/dl), apoA-1 (−9 mg/dl) and apoB-100 (−5 mg/dl) (all P < 0.0001). In contrast, Lp(a) levels increased following the DASH-type diet compared with AAD (median: 58 vs. 44 mg/dl, P < 0.0001). In conclusion, in a large cohort of African Americans, reductions in SFA intake significantly increased Lp(a) levels while reducing LDL-C. Future studies are warranted to elucidate the mechanism(s) underlying the SFA reduction-induced increase in Lp(a) levels and its role in cardiovascular risk across populations.  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号