首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dark-red pigment granules were found in the brain and ganglion of the normal strain of the silkworm, Bombyx mori, by light microscopy. No other pigmentation was seen in the brain or ganglia. Electron microscopy showed that the granules were electron-dense. The granules were similar to the ommochrome-containing pigment granules that are present in the epidermal cells of the quail mutant, as previously reported. The pigment in the larval central nervous system (CNS) of the normal silkworm was identical to the ommin standard with respect to the absorption spectrum, the infrared spectrum, and the Rf value in thin-layer chromatography (TLC). After acid hydrolysis of the pigment, 3-hydroxykynurenine was detected by TLC. The pigment granules in the CNS contained mainly ommin. An ommochrome-binding protein was also detected in the CNS by in vitro binding studies and Western blotting. The ommochrome granules may have an important function in the CNS of the silkworm.  相似文献   

2.
The suboesophageal ganglion of the silkworm, Bombyx mori synthesizes sufficient diapause hormone to produce diapause eggs, regardless of the photoperiodic conditions experienced during the larval stages. When larvae destined to produce non-diapause eggs are implanted with the brain-suboesophageal ganglion complex from larvae which have been reared under short-day conditions, the resulting adults lay diapause eggs. The larvae receiving the complex from larvae reared under long-day conditions gave rise to adults which did not produce any diapause eggs. The brains from pupae which have been reared under long-day conditions show an activity inhibiting the secretion of diapause hormone by the suboesophageal ganglion. The mechanism through which the brain controls the secretion of diapause hormone from the suboesophageal ganglion can be modified by photoperiodic conditions during the larval stages.  相似文献   

3.
ABSTRACT. To locate the photoreceptor involved in the photoperiodic induction of diapause in Bombyx mori L., covering of larval head with black paint or local illumination using chemiluminescent paint was carried out. A silkworm race showing a response of long-day type during the larval stage was employed. The results demonstrated that the photoreceptor is located in the head but is extraocular. The optical properties of the larval body suggest that during the first and second stadia light is admitted through the translucent clypeus of the head, but during later stadia enters over the entire larval body including the head, and that it reaches the cerebral lobe where a photoreceptor is possibly located.  相似文献   

4.
5.
We have cloned the full length of a novel cDNA named Bombyx mori cuticle protein that contains an AlaAlaProAla/Val-repeat (BMCPA) from a cDNA library of integument in the larval silkworm. Both a typical tandem repeat (A-A-P-A/V) for cuticle protein and a unique tandem repeat with Ser, Ala, Gly, Pro, Val, Tyr and Thr were observed in the predicted amino acid sequence of the cDNA encoding BMCPA. Approximately 80% of the amino acids in BMCPA were composed of Ser, Ala, Gly, Pro, Val and Tyr. Northern-hybridization analysis indicated that BMCPA mRNA is expressed only in the larval epidermis and that the expression pattern of the BMCPA gene in the developmental stage was observed mainly at the larval stage. We propose BMCPA may be a novel component of cuticle, and may play an important role in the integument of the larval silkworm.  相似文献   

6.
7.
8.
When a bivoltine race of the silkworm, Bombyx mori, was reared on artificial diets, the silkworm became photoperiodically responsive during larval development. The response curve for the embryonic-diapause induction of the next generation was of the long-day type, showing a sharply defined critical day-length of 16.5 hr. Complete blindness caused by covering the larval stemmata with black paint was confirmed electrophysiologically. It did not influence the diapause incidence. Vitamin A deficiency, which produced a similar defect in visual function in the stemmata, was also without effect on diapause. These observations show that extraretinal photoreception is involved in photoperiodic induction in the silkworm.  相似文献   

9.
10.
The silkworm, Bombyx mori, was reared aseptically on a synthetic diet with and without β-carotene and the effects of carotenoid and vitamin A deficiency on photosensitivities in larval phototaxis, visual function and adult eclosion were studied.β-Carotene or vitamin A acted as a growth-promoting factor in continuous darkness and under photoperiodic conditions. The deficiency of β-carotene decreased the larval phototactic response as growth proceeded. The offspring larvae from eggs laid by β-carotene-deficient moths also lost the phototactic response, but successive rearing with dietary β-carotene or vitamin A re-established the response. The deficiency of β-carotene caused the loss of the electric response by light stimuli in the ocelli of fifth instar larvae and the compound eyes of adult moths. These results indicate that vitamin A is essential for visual function in the silkworm, as reported in other insects. The lack of carotenoid did not affect the development of the pupae or the specific time of eclosion which is regulated by a photoperiodic condition of pupal stage. This observation suggests that the carotenoid and its derivative are not involved in photoreception for the entrainment of the adult eclosion of the silkworm.  相似文献   

11.
The Drosophila ninaE gene encodes an opsin   总被引:32,自引:0,他引:32  
The Drosophila ninaE gene was isolated by a multistep protocol on the basis of its homology to bovine opsin cDNA. The gene encodes the major visual pigment protein (opsin) contained in Drosophila photoreceptor cells R1-R6. The coding sequence is interrupted by four short introns. The positions of three introns are conserved with respect to positions in mammalian opsin genes. The nucleotide sequence has intermittent regions of homology to bovine opsin coding sequences. The deduced amino acid sequence reveals significant homology to vertebrate opsins; there is strong conservation of the retinal binding site and two other regions. The predicted protein secondary structure strikingly resembles that of mammalian opsins. We conclude the Drosophila and vertebrate opsin genes are derived from a common ancestor.  相似文献   

12.
The role of Pax6 in eye development in insects and vertebrates supports the view that their eyes evolved from simple pigment-cup ocelli present in their last common ancestors (Urbilateria). The cerebral eyes in errant polychaetes represent prototype invertebrate pigment-cup ocelli and thus resemble the presumed ancestral eyes. We have analysed expression of conserved eye specification genes in the early development of larval and adult pigment-cup eyes in Platynereis dumerilii (Polychaeta, Annelida, Lophotrochozoa). Both larval and adult eyes form in close vicinity of the optic anlagen on both sides of the developing brain ganglia. While pax6 is expressed in the larval, but not in the developing, adult eyes, expression of six1/2 from trochophora stages onwards specifically outlines the optic anlagen and thus covers both the developing larval and adult eyes. Using Platynereis rhabdomeric opsin as differentiation marker, we show that the first pair of adult eye photoreceptor cells is detected within bilateral clusters that transitorily express ath, the Platynereis atonal orthologue, thus resembling proneural sensory clusters. Our data indicate that--similar to insects, but different from the vertebrates--polychaete six1/2 expression outlines the entire visual system from early developmental stages onwards and ath-positive clusters generate the first photoreceptor cells to appear. We propose that pax6-, six1/2- and ath-positive larval eyes, as found in today's trochophora, were present already in Urbilateria.  相似文献   

13.
In vitro studies with the larval CNS of the silkworm, Bombyx mori revealed the phosphorylation of a 48-kDa protein, which was not dependent on cyclic nucleotides. Studies also revealed modest phosphorylation of this protein by a calcium-dependent but calmodulin-independent mechanism. However, phosphorylation of this protein was greatly enhanced in the presence of juvenile hormone (JH) I by a calcium-independent mechanism. This stimulatory effect of JH was seen in both homogenates as well as in intact CNS of Bombyx. Immunoblotting studies revealed the cross-reaction of this 48-kDa protein with phosphotyrosine monoclonal antibody and the phosphorylation of this protein was inhibited by genistein. This study suggests that the 48-kDa protein is a substrate for tyrosine kinase. The phosphorylation of this protein was also observed in other larval tissues such as salivary gland, fat body, and epidermis of Bombyx.  相似文献   

14.
15.
By use of a bivoltine silkworm race which shows a long-day photoperiodic response after induction during the last (5th) instar, we tried to programme photoperiodic induction in the isolated brain-suboesophageal ganglion complex in vivo and in vitro. A pair of the complexes from a newly ecdysed 5th-instar female was transplanted into the abdomen of a late 5th-instar larva and exposed to long-day (20 h light: 4 h dark) or short-day (8 h light: 16 h dark) conditions for 3 cycles. The short-day-exposed complexes elicited the production of diapause eggs in the recipient silkworms destined to become non-diapause egg producers, whereas the long-day-exposed brain complexes produced non-diapause eggs. Transplant experiments of the brain-suboesophageal ganglion complex using isolated abdomens showed a similar result. The brain complexes from newly ecdysed females of the 5th-instar were cultured in Grace's insect medium under 20 h light: 4 h dark or 8 h light: 16 h dark for 4 cycles, respectively. After in vitro culture, a pair of complexes was implanted into the abdomen of a late 5th-instar larva destined to become a non-diapause egg producer, and the diapause incidence in the resultant moths was examined. The brain complexes which received the short-day cycles induced a large portion of diapause eggs, whereas those which received the long-day conditions induced non-diapause eggs. The connection of corpora cardiaca and corpora allata with the brain complex had no influence on the result. Suboesophageal ganglia which had been cultured in vitro and implanted elicited a remarkable production of diapause eggs, but cultured brains were ineffective in producing diapause eggs, regardless of the photoperiod experienced. These results demonstrate that photoperiodic induction of the silkworm can be programmed in in vivo and in vitro culture systems, and that components of the photoperiodic clock (photoreceptor, clock, and counter system) are located in the brain-suboesophageal ganglion complex, possibly in the brain itself.  相似文献   

16.
Adult stemmata are distinctive insect photoreceptors located on the posterior surfaces of the optic lobes. They originate as larval eyes that migrate inward during metamorphosis. We used a combination of light microscopy and in situ hybridization to examine their anatomical organization in the butterfly Vanessa cardui and to test for the presence of visual pigments, the light sensitive components of the visual transduction pathway. The bilateral cluster of six internal stemmata is located near the ventral edge of the lamina. They retain the dark screening pigment and overlying crystalline cones of the larval stemmata. We found two opsin mRNAs expressed in the stemmata that are also expressed, respectively, in UV-sensitive and green-sensitive photoreceptor cells in the compound eye. A third mRNA that is expressed in blue-sensitive photoreceptor cells of the compound eye was not expressed in the stemmata. Our results reinforce the idea that the adult stemmata are not merely developmental remnants of larval eyes, but remain functional, possibly as components of the circadian input channel.This work was supported by grants from the National Science Foundation to A.D.B. (IBN-0346765) and R.H.W (IBN-9874493).  相似文献   

17.
Asperparalines produced by Aspergillus japonicus JV-23 induce paralysis in silkworm (Bombyx mori) larvae, but the target underlying insect toxicity remains unknown. In the present study, we have investigated the actions of asperparaline A on ligand-gated ion channels expressed in cultured larval brain neurons of the silkworm using patch-clamp electrophysiology. Bath-application of asperparaline A (10 μM) had no effect on the membrane current, but when delivered for 1 min prior to co-application with 10 μM acetylcholine (ACh), it blocked completely the ACh-induced current that was sensitive to mecamylamine, a nicotinic acetylcholine receptor (nAChR)-selective antaogonist. In contrast, 10 μM asperparaline A was ineffective on the γ-aminobutyric acid- and L-glutamate-induced responses of the Bombyx larval neurons. The fungal alkaloid showed no-use dependency in blocking the ACh-induced response with distinct affinity for the peak and slowly-desensitizing current amplitudes of the response to 10 μM ACh in terms of IC(50) values of 20.2 and 39.6 nM, respectively. Asperparaline A (100 nM) reduced the maximum neuron response to ACh with a minimal shift in EC(50), suggesting that the alkaloid is non-competitive with ACh. In contrast to showing marked blocking action on the insect nAChRs, it exhibited only a weak blocking action on chicken α3β4, α4β2 and α7 nAChRs expressed in Xenopus laevis oocytes, suggesting a high selectivity for insect over certain vertebrate nAChRs.  相似文献   

18.
A F Cowman  C S Zuker  G M Rubin 《Cell》1986,44(5):705-710
We have isolated an opsin gene from D. melanogaster that is expressed specifically in photoreceptor cell 8 of the Drosophila compound eye. This opsin is 381 amino acid residues long and is 67% homologous to the ninaE opsin, which is expressed in photoreceptor cells 1-6. The gene is divided into four exons; only one of the intron positions is conserved with that of the ninaE gene.  相似文献   

19.
Direct innervation of GnRH neurons by encephalic photoreceptors in birds   总被引:1,自引:0,他引:1  
In nonmammalian vertebrates, photic cues that regulate the timing of seasonal reproductive cyclicity are detected by nonretinal, nonpineal deep brain photoreceptors. It has long been assumed that the underlying mechanism involves the transmission of photic information from the photoreceptor to a circadian system, and thence to the reproductive axis. An alternative hypothesis is that there is direct communication between the brain photoreceptor and the reproductive axis. In the present study, light and confocal microscopy reveal that gonadotropin releasing hormone (GnRH) neurons and processes are scattered among photoreceptor cells (identified by their opsin-immunoreactivity) in the lateral septum (SL). In the median eminence (ME), opsin and GnRH immunoreactive fibers overlap extensively. Single and double label ultrastructural immunocytochemistry indicate that in the SL and preoptic area (POA), opsin positive terminals form axo-dendritic synapses onto GnRH dendrites. In the ME, opsin and GnRH terminals lie adjacent to each other, make contact with tanycytes, or terminate on the hypophyseal portal capillaries. These results reveal thatbrain photoreceptors communicate directly with GnRH-neurons; this represents a means by which photoperiodic information reaches the reproductive axis.  相似文献   

20.
ABSTRACT. Embryonic diapause of the silkworm, Bombyx mori , is generally induced by temperature and photoperiod during the egg stage of the previous generation and not in the larval stage. However, when silkworm larvae are reared on an artificial diet instead of mulberry leaves, their diapause is strongly affected by temperature and photoperiod experienced in the larval stage, with a distinct long-day response for diapause induction. Moreover when larvae which have been reared on artificial diet under long-day condition are fed mulberry leaves even for a short period of time, most of the resultant female adults lay diapause eggs. These results suggest that the photoperiodic response of larvae for diapause induction may be strongly suppressed by some components in mulberry leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号