首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genes encoding isopropylbenzene metabolism in Pseudomonas putida RE204 are readily lost in two ways: by loss (curing) of plasmid pRE4 which specifies the catabolic pathway and by deletion from pRE4 of an approximately 20-kilobase segment of DNA carrying the catabolic genes. The presence of DNA sequences at the ends of the catabolic gene region sharing homology with one another suggests that the deletions result from recombination events between these homologous sequences.  相似文献   

2.
The isolation of several mutant strains blocked in l-lysine degradation has permitted an assessment of the physiological significance of enzymatic reactions related to lysine metabolism in Pseudomonas putida. Additional studies with intact cells involved labeling of metabolic intermediates from radioactive l- or d-lysine, and patterns of enzyme induction in both wild-type and mutant strains. These studies lead to the conclusions that from l-lysine, the obligatory pathway is via delta-aminovaleramide, delta-aminovalerate, glutaric semialdehyde, and glutarate, and that no alternative pathways from l-lysine exist in our strain. A distinct pathway from d-lysine proceeds via Delta(1)-piperideine-2-carboxylate, l-pipecolate, and Delta(1)-piperideine-6-carboxylate (alpha-aminoadipic semialdehyde). The two pathways are independent in the sense that certain mutants, unable to grow on l-lysine, grow at wild-type rates of d-lysine, utilizing the same intermediates as the wild type, as inferred from labeling studies. This finding implies that lysine racemase in our strain, while detectable in cell extracts, is not physiologically functional in intact cells at a rate that would permit growth of mutants blocked in the l-lysine pathway. Pipecolate oxidase, a d-lysine-related enzyme, is induced by d-lysine and less efficiently by l-lysine. Aminooxyacetate virtually abolishes the inducing activity of l-lysine for this enzyme, suggesting that lysine racemase, although functionally inactive for growth purposes, may still have regulatory significance in permitting cross-induction of d-lysine-related enzymes by l-lysine, and vice versa. This finding suggests a mechanism in bacteria for maintaining regulatory patterns in pathways that may have lost their capacity to support growth. In addition, enzymatic studies are reported which implicate Delta(1)-piperideine-2-carboxylate reductase as an early step in the d-lysine pathway.  相似文献   

3.
Regulation of leucine catabolism in Pseudomonas putida   总被引:2,自引:0,他引:2       下载免费PDF全文
The generation time of Pseudomonas putida with l-leucine was 20 h in synthetic media but only 3 h with d-leucine. Slow growth in the presence of l-leucine was partially overcome by addition of 0.1 mM amounts of either d-valine, l-valine, or 2-ketoisovalerate. The activities of five enzymes which take part in the oxidation of leucine by P. putida were measured under various conditions of growth. Four enzymes were induced by growth with dl-leucine as sole source of carbon: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-methylcrotonyl-coenzyme A carboxylase, and 3-hydroxy-3-methylglutaryl-coenzyme A lyase. The segment of the pathway required for oxidation of 3-methylcrotonate was induced by growth on isovalerate or 3-methylcrotonate without formation of the preceding enzymes. The synthesis of carboxylase and lyase appeared to have been repressed by the addition of l-glutamate or glucose to cells growing on dl-leucine as the sole carbon source. Mutants unable to grow at the expense of isovalerate had reduced levels of carboxylase and lyase, whereas the levels of three enzymes common to the catabolism of all three branched-chain amino acids and those of two isoleucine catabolic enzymes were normal.  相似文献   

4.
Regulation of valine catabolism in Pseudomonas putida   总被引:2,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

5.
Pseudomonas putida RE204 employs a set of plasmid-specified enzymes in the catabolism of isopropylbenzene (cumene) and related alkylbenzenes. A 21,768 bp segment of the plasmid pRE4, whose sequence is discussed here, includes the ipb (isopropylbenzene catabolic) operon as well as associated genetic elements. The ipb operon, ipbAaAbAcAdBCEGFHD, encodes enzymes catalyzing the conversion of isopropylbenzene to isobutyrate, pyruvate, and acetyl-coenzyme A as well as an outer membrane protein (IpbH) of uncertain function. These gene products are 75 to 91% identical to those encoded by other isopropylbenzene catabolic operons and are somewhat less similar to analogous proteins of related pathways for the catabolism of mono-substituted benzenes. Upstream of ipbAa, ipbR encodes a positive regulatory protein which has about 56% identity to XylS regulatory proteins of TOL (xylene/toluate) catabolic plasmids. This similarity and that of the DNA sequence in the proposed ipb operator-promoter region (ipbOP) to the same region of the xyl meta operon (xylOmPm) suggest that, although the IpbR and XylS regulatory proteins recognize very different inducers, their interactions with DNA to activate gene expression are similar. Upstream of ipbR is an 1196 bp insertion sequence, IS1543, related to IS52 and IS1406. Separating ipbR from ipbAa are 3 additional tightly clustered IS elements. These are IS1544, related to IS1543, IS52, and other members of the IS5 family; IS1545, related to IS1240; and IS1546, related to IS1491. Encompassing the ipb catabolic genes and the other genetic elements and separated from each other by 18,492 bp, are two identical, directly repeated 1007 bp DNA segments. Homologous recombination between these segments appears to be responsible for the occasional deletion of the intervening DNA from pRE4.  相似文献   

6.
Flavonoids are 15-carbon plant secondary metabolites exuded in the rhizosphere that hosts several flavonoid-degrading bacteria. We studied flavonoid catabolism in a plant growth-promoting rhizobacterial strain of Pseudomonas by using a combination of biochemical and genetic approaches. Transposants carrying mini-Tn5gfp insertions were screened for flavonoid auxotrophy, and these mutant strains were found to be unable to grow in the flavonols naringenin and quercetin, while their growth in glycerol was comparable to that of the parental strain. In order to understand flavonoid catabolism, culture supernatants, whole-cell fractions, cell lysate, and cell debris of the wild-type and mutant strains were analyzed. Intermediates that accumulated intracellularly and those secreted in the medium were identified by a combination of reversed-phase high-pressure liquid chromatography and electrospray ionization-mass spectrometry. Structures of four key intermediates were confirmed by one-dimensional nuclear magnetic resonance spectroscopy. Comparative metabolic profiling of the compounds in the wild-type and mutant strains allowed us to understand the degradation events and to identify six metabolic intermediates. The first step in the pathway involves 3,3'-didehydroxylation, followed by hydrolysis and cleavage of the C-ring, leading via subsequent oxidations to the formation of protocatechuate. This is the first report on quercetin dehydroxylation in aerobic conditions leading to naringenin accumulation.  相似文献   

7.
A 6.0-kilobase EcoRI fragment of the Pseudomonas aeruginosa PAO chromosome containing a cluster of genes specifying carbohydrate catabolism was cloned into the multicopy plasmid pRO1769. The vector contains a unique EcoRI site for cloning within a streptomycin resistance determinant and a selectable gene encoding gentamicin resistance. Mutants of P. aeruginosa PAO transformed with the chimeric plasmid pRO1816 regained the ability to grow on glucose, and the following deficiencies in enzyme or transport activities corresponding to the specific mutations were complemented: glcT1, glucose transport and periplasmic glucose-binding protein; glcK1, glucokinase; and edd-1, 6-phosphogluconate dehydratase. Two other carbohydrate catabolic markers that are cotransducible with glcT1 and edd-1 were not complemented by plasmid pRO1816: zwf-1, glucose-6-phosphate dehydrogenase; and eda-9001, 2-keto-3-deoxy-6-phosphogluconate aldolase. However, all five of these normally inducible activities were expressed at markedly elevated basal levels when transformed cells of prototrophic strain PAO1 were grown without carbohydrate inducer. Vector plasmid pRO1769 had no effect on the expression of these activities in transformed mutant or wild-type cells. Thus, the chromosomal insert in pRO1816 contains the edd and glcK structural genes, at least one gene (glcT) that is essential for expression of the glucose active transport system, and other loci that regulate the expression of the five clustered carbohydrate catabolic genes. The insert in pRO1816 also complemented the edd-1 mutation in a glucose-negative Pseudomonas putida mutant but not the eda-1 defect in another mutant. Moreover, pRO1816 caused the expression of high specific activities of glucokinase, an enzyme that is naturally lacking in these strains of Pseudomonas putida.  相似文献   

8.
Reductive catabolism of the pyrimidine bases uracil and thymine was found to occur in Pseudomonas putida biotype B. The pyrimidine reductive catabolic pathway enzymes dihydropyrimidine dehydrogenase, dihydropyrimidinase and N-carbamoyl--alanine amidohydrolase activities were detected in this pseudomonad. The initial reductive pathway enzyme dihydropyrimidine dehydrogenase utilized NADH or NADPH as its nicotinamide cofactor. The source of nitrogen in the culture medium influenced the reductive pathway enzyme activities and, in particular, dihydropyrimidinase activity was highly affected by nitrogen source. The reductive pathway enzyme activities in succinate-grown P. putida biotype B cells were induced when uracil served as the nitrogen source.  相似文献   

9.
The regulation of the histidine-degrading pathway is known to involve induction and repression. Our studies have shown that succinate may control the histidine-degrading pathway by sequential negative feedback inhibition. Succinate inhibited urocanase, and urocanate in turn inhibited histidase. Crude preparations of the two enzymes were made from Pseudomonas putida grown on l-histidine. Succinate was a competitive inhibitor of urocanase (K(i), 1.8 mm). Lactate, pyruvate, alpha-ketoglutarate, and glutamate did not inhibit urocanase. Urocanate inhibited histidase competitively (K(i), 0.13 mm). A multienzyme system (histidine to glutamate), when incubated with histidine and succinate, exhibited the combined effect. Succinate caused the level of accumulated urocanate to increase and indirectly blocked histidine disappearance. Growth of cells on urocanate as a nitrogen source was inhibited by 1% succinate. Succinate may play a physiological role in the biological regulation of histidine metabolism.  相似文献   

10.
11.
Thirteen bacteria were isolated on D-4-hydroxyphenylglycine as sole carbon and energy source. Seven strains transaminated only the D-enantiomer while the other six isolates transaminated both enantiomers of 4-hydroxyphenylglycine. One of the six strains utilizing both enantiomers was characterized as a Pseudomonas putida. This strain, MW27, employed two enantioselective transaminases, to catalyze the initial step in the metabolism of DL-4-hydroxyphenylglycine. The product of the transamination, 4-hydroxyphenylglyoxylate, was further metabolized via 4-hydroxybenzaldehyde and 4-hydroxybenzoate to protocatechuate. Preliminary results indicate that both transaminases are co-ordinately synthesized together with the 4-hydroxyphenylglyoxylate decarboxylase and the NADP+-dependent 4-hydroxybenzaldehyde dehydrogenase.  相似文献   

12.
Dl-2,3,4,5,6-pentafluoromandelic acid (PFM) specifically inhibits the growth of Pseudomonas putida (ATCC 12633) on medium containing mandelate as sole carbon and energy source by competitive inhibition of mandelate dehydrogenase. PFM is not metabolized and is neither an inducer of the mandelate catabolic enzymes nor an antagonist of induction. Mutants resistant to the inhibitory effects of PFM (PFMr) were isolated; most prove to be superinducible, i.e. synthesize coordinately the mandelatespecific catabolic enzymes at elevated levels following induction. In at least one case the PFMr mutation maps very near the structural genes that encode the enzymes functional in the first two steps of mandelate catabolism. It is reasoned that the PFMr mutation is of the promotor type. Resistance to substrate analogs such as PFM offers a general method for isolation of regulatory mutants in catabolic metabolism.Dedicated to Prof. Roger Y. Stanier on the occasion of his 60th birthday  相似文献   

13.
Aerobic degradation of phenylacetic acid in Pseudomonas putida U is carried out by a central catabolism pathway (phenylacetyl-coenzyme A [CoA] catabolon core). Induction of this route was analyzed by using different mutants specifically designed for this objective. Our results revealed that the true inducer molecule is phenylacetyl-CoA and not other structurally or catabolically related aromatic compounds.  相似文献   

14.
15.
p-cymene pathway in Pseudomonas putida: initial reactions.   总被引:12,自引:10,他引:2       下载免费PDF全文
Initial reactions of the p-cymene pathway induced in Pseudomonas putida PL have been reinvestigated. Oxidation of the methyl group attached to the nucleus occurs in three steps to give p-cumic acid. The substrate for the ring cleavage of 2,3-dihydroxy-p-cumate is formed from p-cumate in two reactions via a dihydrodiol intermediate (2,3-dihydroxy-4-isopropylcyclohexa-4,6-dienoate) and not as previously postulated via 3-hydroxy-p-cumate. There are three pieces of evidence for the physiological role of the dihydrodiol intermediate. (i) a mutant of P. putida PL-pT-11/43, which is unable to grow with p-cumate, accumulates a compound from p-cumate, which was identified as 2,3-dihydroxy-4-isopropylcyclohexa-4,6-dienoate. (II) This metabolite is enzymically oxidized by a nicotinamide adenine dinucleotide-dependent dehydrogenase that is present in crude extracts of the wild type and a revertant strain (PL-pT-11/43-R1) but not in the mutant. (iii) 3-Hydroxy-p-cumate does not support growth of P . putida PL-W, and it is not oxidized by cells or extracts. 3-Hydroxy-p-cumate was readily isolated as before from culture supernatants, due to its ready formation from the dihydrodiol in acid solution. Mass spectral analysis of the dihydrodiol accumulated in 18O2-enriched atmospheres showed that both hydroxyl atoms are derived from the same molecule of O2. The formation and absorbance maxima of dihydrodiols that accumulated during the growth of the mutant PL-pT-11/43 in the presence of various benzoates (or toluenes) that have substituents at the carbon 4 atom also is reported.  相似文献   

16.
17.
The biotransformation of 6,6-dimethylfulvene [5-(1-methylethylidene)-1,3-cyclopentadiene], a nonaromatic C(inf5) carbocyclic analog of isopropylbenzene, was examined by using Pseudomonas putida RE213, a Tn5-generated dihydrodiol-accumulating mutant of the isopropylbenzene-degrading strain P. putida RE204. 6,6-Dimethylfulvene was converted to a single chiral product identified as (+)-(1R,2S)-cis-1,2-dihydroxy-5-(1-methylethylidene)-3-cyclopentene. This isopropylbenzene 2,3-dioxygenase-catalyzed transformation demonstrates the potential of bacterial arene dioxygenases for the direct conversion of cyclopentadienylidene compounds to homochiral C(inf5) carbocyclic cis-diols for use in enantiocontrolled organic syntheses.  相似文献   

18.
L-lysine catabolism in Pseudomonas putida KT2440 was generally thought to occur via the aminovalerate pathway. In this study we demonstrate the operation of the alternative aminoadipate pathway with the intermediates D-lysine, L-pipecolate, and aminoadipate. The simultaneous operation of both pathways for the use of L-lysine as the sole carbon and nitrogen source was confirmed genetically. Mutants with mutations in either pathway failed to use L-lysine as the sole carbon and nitrogen source, although they still used L-lysine as the nitrogen source, albeit at reduced growth rates. New genes were identified in both pathways, including the davB and davA genes that encode the enzymes involved in the oxidation of L-lysine to delta-aminovaleramide and the hydrolysis of the latter to delta-aminovalerate, respectively. The amaA, dkpA, and amaB genes, in contrast, encode proteins involved in the transformation of Delta1-piperidine-2-carboxylate into aminoadipate. Based on L-[U-13C, U-15N]lysine experiments, we quantified the relative use of pathways in the wild type and its isogenic mutants. The fate of 13C label of L-lysine indicates that in addition to the existing connection between the D- and L-lysine pathways at the early steps of the catabolism of L-lysine mediated by a lysine racemase, there is yet another interconnection at the lower end of the pathways in which aminoadipate is channeled to yield glutarate. This study establishes an unequivocal relationship between gene and pathway enzymes in the metabolism of L-lysine, which is of crucial importance for the successful colonization of the rhizosphere of plants by this microorganism.  相似文献   

19.
20.
Pseudomonas putida P111 is able to utilize a broad range of monochlorinated, dichlorinated, and trichlorinated benzoates. The involvement of two separate dioxygenases was noted from data on plasmid profiles and DNA hybridization. The benzoate dioxygenase, which converts 3-chlorobenzoate (3-CB), 4-CB, and benzoate to the corresponding catechols via reduction of a dihydrodiol, was shown to be chromosomally coded. The chlorobenzoate-1,2-dioxygenase that converts ortho-chlorobenzoates to the corresponding catechols without the need of a functional dioldehydrogenase was shown to be encoded on plasmid pPB111 (75 kb). Cured strains were unable to utilize ortho-chlorobenzoates for growth. DNA hybridization data indicated that catabolism of the corresponding chlorocatechols was coded on chromosomal genes. Maintenance of plasmid pPB111 was dependent on the presence of ortho-chlorobenzoates in the growth media. A unique variant of P111 (P111D), able to grow on 3,5-dichlorobenzoate (3,5-DCB), was obtained by continuous subculturing from media containing progressively lower and higher concentrations of 3-CB and 3,5-DCB, respectively. The low frequency of segregants able to grow on 2,5-DCB, 2,3-DCB, and 2,3, 5-trichlorobenzoate was evident by lag periods greater than 200 h. Continued subculture on 3,5-DCB resulted in the formation of new plasmid pPH111 (120 kb), which was homologous to pPB111. A probe from the clc operon, which encodes for the chlorocatechol pathway, hybridized to plasmid pPH111 and to the chromosome of the wild-type strain P111 but not to its plasmid pPB111 nor to the chromosome of strain P111A, which had lost the ability to utilize chlorobenzoates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号