首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After activation with IFN-gamma, thioglycollate-elicited murine peritoneal macrophages kill schistosomula of Schistosoma mansoni in vitro by an L-arginine-dependent mechanism which involves the production of reactive nitrogen oxides (NO). In the present study we demonstrate that the regulatory cytokines IL-10, IL-4, and transforming growth factor-beta (TGF-beta) are potent inhibitors of this extracellular killing function of activated macrophages. Each cytokine was found to suppress killing of schistosomula in a dose-dependent fashion. The activity of IL-10 was not permanent, because subsequent treatment with additional IFN-gamma 2 to 6 h later reversed the inhibition of macrophage larval killing. More importantly, the combination of suboptimal levels of any two of these three cytokines was found to give a potent synergistic suppression of schistosomulum killing by IFN-gamma-treated macrophages. Similarly, IL-10, IL-4, or TGF-beta alone blocked the production of NO, and when used in combination these cytokines exhibited an enhanced inhibitory effect on nitrite production. Macrophage-mediated killing of schistosomula through the generation of NO has been shown previously to be a major effector mechanism of schistosome immunity. The results presented here suggest that the suppression of this mechanism by induction of the regulatory cytokines IL-10, IL-4, and TGF-beta, which are known to be produced during schistosome infection, may be an important strategy used by the parasite to evade macrophage-mediated immune destruction.  相似文献   

2.
DNP-specific, class II-restricted cloned T cells were shown to kill DNP-bearing A20.2J (A20-DNP) antigen-presenting cells. This killing was DNP-specific and was restricted by IA. Results from bystander cytotoxicity, cold-target inhibition, and protein and lymphokine inhibition experiments indicated that killing of A20-DNP targets was mediated by direct lysis. In addition to the direct lysis, antigen stimulation of the T cells also resulted in production of a soluble cytolytic factor which killed bystander L929 fibroblast cells. This killing was sensitive to inhibition of protein synthesis and lymphokine production but was not affected by the addition of cold A20-DNP target cells. Additional studies showed that other antigen-presenting cells, i.e., DNP-bearing P388D1 and splenic macrophages, were also lysed by the cloned T cells. These findings may indicate that lysis of target cells by nominal antigen-specific, class II-restricted T cells plays a role in immune regulation and/or immune protection.  相似文献   

3.
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-alpha in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.  相似文献   

4.
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-α in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.  相似文献   

5.
Mouse resident peritoneal macrophages activated with bacterial lipopolysaccharide (LPS) rapidly lost their ability to kill tumor cells in vitro. Such loss of killing has previously been attributed to the effects of prostaglandin E (PGE) produced by the LPS-stimulated macrophages. Macrophages exposed in the current study to both LPS and partially purified lymphokine did not lose cytolytic activity, in spite of the fact that these cells produced undiminished amounts of PGE, compared to controls. Cytolytic activity was shown to be retained under these conditions because lymphokine decreased the sensitivity of activated macrophages to the negative regulatory effects of PGE. The mechanism responsible for the lymphokine effect is not known; however, generalized inhibition of macrophage responsiveness to the hormone does not appear to be involved because lymphokine did not reduce the cyclic AMP response of macrophages, measured on a whole cell basis, after they were exposed to PGE.  相似文献   

6.
IL-10, a newly designated cytokine primarily produced by the Th2 subset of CD4+ T lymphocytes and Ly-1+ B lymphocytes, has recently been hypothesized to inhibit cytokine production by Th1 T cell clones by blocking accessory cell- (AC) dependent costimulatory function. To evaluate the effect of IL-10 on Con A-induced proliferative responses of resting murine T cells, purified T cells were cultured with different types of AC. The addition of IL-10 produced a 70 to 90% inhibition of resting T lymphocyte proliferation when purified populations of macrophages were used as AC, but had no effect on the AC function of T-depleted spleen cells, activated B cells, dendritic cells, or L cells. The inhibitory effects of IL-10 were inversely related to the concentration of mitogen and could be reversed by the addition of the neutralizing anti-IL-10 mAb, SXC1. The inhibition of macrophage AC function was not related to the induction of a suppressor cytokine as stimulation by mixtures of macrophages and limiting numbers of dendritic cells was not inhibited. The decrease in proliferative responses was primarily secondary to inhibition of IL-2 production although the failure of exogenous IL-2 to completely reconstitute the response suggested that IL-10 may also exert inhibitory effects on the induction of expression of a functional IL-2R. These results are most consistent with a model in which IL-10 inhibits the induction of expression on macrophages of a critical costimulatory molecule that may be constitutively expressed on other types of AC.  相似文献   

7.
Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune responses   总被引:8,自引:0,他引:8  
IL-10 has proved to be a key cytokine in regulating inflammatory responses by controlling the production and function of various other cytokines. The suppressor of cytokine signaling (SOCS) gene products are a family of cytoplasmic molecules that are essential mediators for negatively regulating cytokine signaling. It has been previously shown that IL-10 induced SOCS3 expression and that forced constitutive expression of SOCS3 inhibits IL-10/STAT3 activation and LPS-induced macrophage activation. In this report, we show that, in addition to SOCS3 expression, IL-10 induces SOCS1 up-regulation in all cell lines tested, including Ba/F3 pro-B cells, MC/9 mast cells, M1 leukemia cells, U3A human fibroblasts, and primary mouse CD4(+) T cells. Induction of SOCS molecules is dependent on STAT3 activation by IL-10R1. Cell lines constitutively overexpressing SOCS proteins demonstrated that SOCS1 and SOCS3, but not SOCS2, are able to partially inhibit IL-10-mediated STAT3 activation and proliferative responses. Pretreatment of M1 cells with IFN-gamma resulted in SOCS1 induction and a reduction of IL-10-mediated STAT3 activation and cell growth inhibition. IL-10-induced SOCS is associated with the inhibition of IFN-gamma signaling in various cell types, and this inhibition is independent of C-terminal serine residues of the IL-10R, previously shown to be required for other anti-inflammatory responses. Thus, the present results show that both SOCS1 and SOCS3 are induced by IL-10 and may be important inhibitors of both IL-10 and IFN-gamma signaling. IL-10-induced SOCS1 may directly inhibit IL-10 IFN-gamma signaling, while inhibition of other proinflammatory cytokine responses may use additional IL-10R1-mediated mechanisms.  相似文献   

8.
9.
Experimental allergic encephalomyelitis (EAE) is a CNS autoimmune disease mediated by the action of CD4(+) T cells, macrophages, and proinflammatory cytokines. IL-10 is a cytokine shown to have many anti-inflammatory properties. Studies have shown both inhibition and exacerbation of EAE after systemic IL-10 protein administration. We have compared the inhibitory effect in EAE of Il10 gene delivery in the CNS. Fibroblasts transduced with retroviral vectors expressing IL-10 could inhibit EAE. This was not associated with a prevention of cellular recruitment but an alteration in their phenotype, notably an increase in the numbers of CD8(+) T and B cells. In marked contrast, CNS delivery of adenovirus coding for mouse IL-10 or IL-10 protein performed over a wide dose range failed to inhibit disease, despite producing similar or greater amounts of IL-10 protein. Thus the action of IL-10 may differ depending on the local cytokine microenvironment produced by the gene-secreting cell types.  相似文献   

10.
IL-10 inhibits cytokine production by activated macrophages   总被引:127,自引:0,他引:127  
IL-10 inhibits the ability of macrophage but not B cell APC to stimulate cytokine synthesis by Th1 T cell clones. In this study we have examined the direct effects of IL-10 on both macrophage cell lines and normal peritoneal macrophages. LPS (or LPS and IFN-gamma)-induced production of IL-1, IL-6, and TNF-alpha proteins was significantly inhibited by IL-10 in two macrophage cell lines. Furthermore, IL-10 appears to be a more potent inhibitor of monokine synthesis than IL-4 when added at similar concentrations. LPS or LPS- and IFN-gamma-induced expression of IL-1 alpha, IL-6, or TNF-alpha mRNA was also inhibited by IL-10 as shown by semiquantitative polymerase chain reaction or Northern blot analysis. Inhibition of LPS-induced IL-6 secretion by IL-10 was less marked in FACS-purified peritoneal macrophages than in the macrophage cell lines. However, IL-6 production by peritoneal macrophages was enhanced by addition of anti-IL-10 antibodies, implying the presence in these cultures of endogenous IL-10, which results in an intrinsic reduction of monokine synthesis after LPS activation. Consistent with this proposal, LPS-stimulated peritoneal macrophages were shown to directly produce IL-10 detectable by ELISA. Furthermore, IFN-gamma was found to enhance IL-6 production by LPS-stimulated peritoneal macrophages, and this could be explained by its suppression of IL-10 production by this same population of cells. In addition to its effects on monokine synthesis, IL-10 also induces a significant change in morphology in IFN-gamma-stimulated peritoneal macrophages. The potent action of IL-10 on the macrophage, particularly at the level of monokine production, supports an important role for this cytokine not only in the regulation of T cell responses but also in acute inflammatory responses.  相似文献   

11.
De AK  Kodys K  Miller-Graziano C 《Cytokine》1998,10(12):911-919
The T cell-secreted lymphokine interleukin 13 (IL-13) exerts pleiotropic effects on monocytes (Mphi) and B cells. Since accessory cells, like Mphi and B cells, also act in antigen-presenting and lymphokine augmentation of T cells, Mphi and B cells may be able to effect T cell IL-13 production. Purified T cells produced slightly less IL-13 than the lower T cell numbers contained in peripheral blood mononuclear cell population, further suggesting accessory cell augmentation. Addition of 10% B cells [either unstimulated or pokeweed mitogen (PWM)-stimulated] to autologous T cells only moderately augmented T cell IL-13 levels. PWM-stimulated B cell culture supernates had even less augmenting effect on T cell IL-13 levels and unstimulated B cell culture supernates did not augment T cell IL-13 production. In contrast to the moderately augmenting effect of B cells or their stimulated culture supernates, addition of 10% Mphi, either unstimulated or muramyl dipeptide (MDP)+IFN-gamma stimulated, to autologous T cells produced a highly significant increase in T cell IL-13 production. Mphi culture supernates were equally effective in augmenting T cell IL-13 levels, suggesting both that cell-to-cell contact is not critical for Mphi augmentation of T cell IL-13 levels, and that Mphi secreted factors are pivotal. CD64(+) Mphi (or their culture supernates), which are known as poor antigen-presenting cells, also effectively augmented T cell IL-13 production, further supporting the involvement of Mphi secreted factors. Finally, experiments with exogenous addition of recombinant monokines, as well as neutralization experiments with different cytokine antibodies, suggested IL-1beta as a primary cytokine involved in the augmentation of T cell IL-13 levels by accessory cells. However, these experiments also indicated other unidentified Mphi factors as playing a significant role in producing maximal T cell IL-13 production.  相似文献   

12.
13.
14.
15.
We examined the effects of TGF-beta 1 on induction of several activated macrophage antimicrobial activities against the protozoan parasite Leishmania, and on induction of tumoricidal activity against the fibrosarcoma tumor target 1023. TGF-beta by itself did not affect the viability of either the intracellular or extracellular target in concentrations up to 200 ng/ml. As little as 1 ng/ml TGF-beta, however, suppressed more than 70% of the intracellular killing activity of macrophages treated with lymphokines. In contrast, more than 100 ng/ml TGF-beta was required to suppress intracellular killing by cells activated with an equivalent amount of recombinant IFN-gamma. Addition of TGF-beta for up to 30 min after exposure to activation factors significantly reduced macrophage killing of intracellular parasites. Pretreatment of macrophages with TGF-beta was even more effective: treatment of cells with TGF-beta for 4 h before addition of activation factors abolished all macrophage intracellular killing activity. Regardless of treatment sequence, however, TGF-beta had absolutely no effect, at any concentration tested, on activated macrophage resistance to infection induced by lymphokines or by the cooperative interaction of IFN-gamma and IL-4. Effects of TGF-beta on tumoricidal activity of activated macrophages was intermediate to that of its effects on intracellular killing or resistance to infection. Lymphokine-induced tumor cytotoxicity was marginally (25%) affected by TGF-beta; 200 ng/ml was able to suppress IFN-gamma-induced tumoricidal activity by 40%. Thus, TGF-beta dramatically suppressed certain activated macrophage cytotoxic effector reactions, but was only partially or not at all effective against others, even when the same activation agent (IFN-gamma) was used. The biochemical target for TGF-beta suppressive activity in these reactions may be the pathway for nitric oxide production from L-arginine, because TGF-beta also inhibited the generation of nitric oxide by cytokine-activated macrophages.  相似文献   

16.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

17.
IL-18 has been shown to be a strong cofactor for Th1 T cell development. However, we previously demonstrated that when IL-18 was combined with IL-2, there was a synergistic induction of a Th2 cytokine, IL-13, in both T and NK cells. More recently, we and other groups have reported that IL-18 can potentially induce IgE, IgG1, and Th2 cytokine production in murine experimental models. Here, we report on the generation of IL-18-transgenic (Tg) mice in which mature mouse IL-18 cDNA was expressed. CD8+CD44high T cells and macrophages were increased, but B cells were decreased in these mice while serum IgE, IgG1, IL-4, and IFN-gamma levels were significantly increased. Splenic T cells in IL-18 Tg mice produced higher levels of IFN-gamma, IL-4, IL-5, and IL-13 than control wild-type mice. Thus, aberrant expression of IL-18 in vivo results in the increased production of both Th1 and Th2 cytokines.  相似文献   

18.
WSX-1 is the alpha subunit of the IL-27R complex expressed by T, B, NK/NKT cells, as well as macrophages and dendritic cells (DCs). Although it has been shown that IL-27 has both stimulatory and inhibitory effects on T cells, little is known on the role of IL-27/WSX-1 on DCs. LPS stimulation of splenic DCs in vivo resulted in prolonged CD80/CD86 expression on WSX-1-deficient DCs over wild-type DCs. Upon LPS stimulation in vitro, WSX-1-deficient DCs expressed Th1-promoting molecules higher than wild-type DCs. In an allogeneic MLR assay, WSX-1-deficient DCs were more potent than wild-type DCs in the induction of proliferation of and IFN-gamma production by responder cell proliferation. When cocultured with purified NK cells, WSX-1-deficient DCs induced higher IFN-gamma production and killing activity of NK cells than wild-type DCs. As such, Ag-pulsed WSX-1-deficient DCs induced Th1-biased strong immune responses over wild-type DCs when transferred in vivo. WSX-1-deficient DCs were hyperreactive to LPS stimulation as compared with wild-type DCs by cytokine production. IL-27 suppressed LPS-induced CD80/86 expression and cytokine production by DCs in vitro. Thus, our study demonstrated that IL-27/WSX-1 signaling potently down-regulates APC function and Th1-promoting function of DCs to modulate overall immune responses.  相似文献   

19.
Costimulation between T cells and APCs is required for adaptive immune responses. CD40, an important costimulatory molecule, is expressed on a variety of cell types, including macrophages and microglia. The aberrant expression of CD40 is implicated in diseases including multiple sclerosis, rheumatoid arthritis, and Alzheimer's disease, and inhibition of CD40 signaling has beneficial effects in a number of animal models of autoimmune diseases. In this study, we discovered that IL-10, a cytokine with anti-inflammatory properties, inhibits LPS-induced CD40 gene expression. We previously demonstrated that LPS induction of CD40 in macrophages/microglia involves both NF-kappaB activation and LPS-induced production of IFN-beta, which subsequently activates STAT-1alpha. IL-10 inhibits LPS-induced IFN-beta gene expression and subsequent STAT-1alpha activation, but does not affect NF-kappaB activation. Our results also demonstrate that IL-10 inhibits LPS-induced recruitment of STAT-1alpha, RNA polymerase II, and the coactivators CREB binding protein and p300 to the CD40 promoter, as well as inhibiting permissive histone H3 acetylation (AcH3). IL-10 and LPS synergize to induce suppressor of cytokine signaling (SOCS)-3 gene expression in macrophages and microglia. Ectopic expression of SOCS-3 attenuates LPS-induced STAT activation, and inhibits LPS-induced CD40 gene expression, comparable to that seen by IL-10. These results indicate that SOCS-3 plays an important role in the negative regulation of LPS-induced CD40 gene expression by IL-10.  相似文献   

20.
Role of IL-10 in the resolution of airway inflammation   总被引:1,自引:0,他引:1  
IL-10 can be considered an important agent in the resolution of inflammation. Originally named "cytokine synthesis inhibitory factor" for its ability to inhibit IFN-gamma and IL-2 production in Th2 cells, it is secreted by monocytes, macrophages, mast cells, T and B lymphocytes, and dendritic cells (DCs). IL-10 production and release by monocytic cells in response to allergic challenge is upregulated by TNF-alpha, and by negative feedback regulation of itself. However, it is also secreted by T regulatory cells (Tregs), under the control of IL-2. Importantly in the context of asthma, IL-10 inhibits eosinophilia, by suppression of IL-5 and GM-CSF, by direct effects on eosinophil apoptosis, and effects on cell proliferation through down-regulation of IL-1. A number of its cytokine suppressive characteristics are now thought to occur through its upregulation of suppressor of cytokine signaling (SOCS)-3. IL-10 is also a suppressor of nitric oxide (NO) production, which may have ramifications for its role in airway inflammatory diseases. Initial clinical trials have demonstrated relative safety and few clinically adverse events at doses of recombinant human IL-10 below 50 microg/kg, with mixed success in treatment of patients with inflammatory bowel disease and psoriasis. However, both steroid therapy and allergen specific immunotherapy are known to elevate endogenous IL-10 levels, which may account for their efficacy, suggesting that further study of IL-10 as a target for treatment of airway inflammatory diseases such as asthma and COPD is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号