首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Five N-acetyl-galactosamine-specific lectins were isolated from the bark of the legume tree Sophora japonica. These lectins are immunologically and structurally very similar, but not identical, to the Sophora seed and leaf lectins. The carbohydrate specificities and hemagglutinin activities of these lectins are indistinguishable at pH 8.5 but their activities differ markedly at pH values below 8. All five lectins are tetrameric glycoproteins made up of different combinations of subunits of about 30,000, 30,100, 33,000 Mr containing 3% to 5% covalently attached sugar. These lectins are the overwhelmingly dominant proteins in bark, but they do not appear to be present in other tissues. Amino terminal sequence analysis indicates that at least two distinct lectin genes are expressed in bark.  相似文献   

2.
Leaves from mature Griffonia simplicifolia plants were examined for the presence of leaf lectins possessing sugar binding specificities similar to the four known seed lectins (GS-I, GS-II, GS-III, GS-IV). Three (GS-I, -II, -IV) of the four known G. simplicifolia seed lectins were present in the leaves. Leaf G. simplicifolia lectins I and IV were similar to the respective seed lectins. Leaf GS-II, however, was composed of two types of subunits (Mr = 33,000 and 19,000), whereas the seed lectin consists of only one type of subunit (Mr 32,500). Seed and leaf GS-II lectins also had different isoelectric points. All leaf and seed lectins were similar with respect to their hemagglutination and glycoconjugate precipitation properties and all subunits contained covalently bound carbohydrate. Leaf GS-IV appeared slightly under-glycosylated compared to seed GS-IV.

The fate of GS-I and GS-II seed lectins in aging cotyledons was investigated. GS-I isolectins usually contain isolectin subtypes associated with each main isolectin. Upon inbibition and germination, these GS-I isolectin subtypes disappeared. Over time, GS-II lectin did not change its disc gel electrophoretic properties.

  相似文献   

3.
Fish eggs are a rich source of lectins, the sugar-binding (glyco)proteins. In this paper we aim to further characterise perch roe lectins using several protein characterisation techniques including affinity chromatography and protein sequencing. Perch roe lectins are comprised of two subunits, subunit A and subunit B which have molecular weights of 12,400 and 12,000, respectively. These subunits form multiple aggregates AnBn in which the two subunits are present in differing ratios and, also as an `homogeneous' aggregates of one of the subunits An or Bn. Lectins An (designated A thereafter) and lectin Bn (designated B thereafter) formed by one type of subunit only (subunit A or B) were isolated in a pure state. Lectin B could also be isolated by spontaneous precipitation occurring during incubation of the perch roe extract at 4°C. Lectin B has a higher affinity for d-glucose than lectin A, whereas both lectins (A and B) have a similar affinity for l-fucose. The N-terminal region of subunit B showed the following amino acid sequence: EPAXPPWGTQFG-, whereas the N-terminus of subunit A was blocked and therefore could not be directly sequenced. Differences between subunits A and B were also found in amino acid composition. This unusual complexity and variability of perch roe lectins is likely to have physiological significance which, as yet, remains to be determined.  相似文献   

4.
Lectins were isolated and purified from three broad bean (Vicia faba L.) cultivars differing in the effectiveness of their symbiosis with root nodule bacteria (Rhizobium leguminosarum bv. viciae). From seeds of symbiotically effective cvs. Aushra and Daiva, we isolated only one lectin from each cultivar, whereas two lectins, Yu-1 and Yu-2, were isolated from seeds of symbiotically ineffective cv. Yugeva. Lectins from cvs. Aushra and Daiva were more active than lectins from cv. Yugeva and exhibited similar carbohydrate specificity. Methyl--D-mannopyranoside and trehalose were the most potent inhibitors of their hemagglutination activity. Lectin Yu-1 resembled them in its carbohydrate-binding properties. However, D-mannose, trehalose, and melecitose were its most effective inhibitors. Lectin Yu-2 differed substantially from these lectins. It exhibited an affinity for D-glucuronic acid, D-glucosamine, and 2-deoxy-D-glucose. In addition, it could interact with carbohydrates of the galactose family (2-deoxy-D-galactose, D-galactosamine, and lactose) and also with D-xylose and 2-deoxy-D-talose. Thus, lectins from cvs. Aushra and Daiva and also Yu-1 can be considered D-mannose/D-glucose-specific lectins, whereas Yu-2 lectin exhibited a combined carbohydrate specificity. The affinity of Yu-1 and Yu-2 lectins for their natural receptors, exopolysaccharides and lipopolysaccharides of broad-bean nodule bacteria, was twice as low as that of lectins from cvs. Aushra and Daiva. We believe that properties of seed lectins are an important cultivar-specific trait that determines host-plant (broad beans) specificity during the establishment of legume–rhizobia symbiosis.  相似文献   

5.
Subcellular Localizations of Two Dolichos biflorus Lectins   总被引:3,自引:3,他引:0       下载免费PDF全文
The subcellular localizations of the Dolichos biflorus seed lectin and the structurally related lectin (cross-reactive material [CRM]) from the stems and leaves of this plant were determined by immunofluorescence, immunocytochemistry, and cell fractionation procedures. Subcellular fractionation of the cotyledons using a nonaqueous procedure to minimize disruption of the protein bodies showed that the majority of the seed lectin was associated with the protein body fraction and some lectin was also present in the starch granules. Immunofluorescence and immunocytochemistry at the light microscopic level showed that the seed lectin was mainly localized at the peripheries of these organelles. Lectin was also found in the cytoplasm of the cells, although the amount appeared to be dependent upon the degree of protein body disruption.

Immunofluorescence and immunocytochemistry studies of the stem and leaf lectin (CRM) indicated that a significant portion of this lectin may be associated with the cell walls, although lectin was also seen in the cytoplasm of plasmolyzed cells. Extraction and cell fractionation studies showed that a large portion of the CRM is readily solubilized and most of the remainder is pelleted at 1000g. The CRM can be extracted from these pellets by treatment with cellulase and pectinase; other reagents such as NaCl, detergents, and EDTA could also release significant amounts of CRM. These studies suggest that the CRM is noncovalently bound to the cell walls. A comparison of the distribution of exogenously supplied [125I]CRM with the endogenous CRM during extraction and cell fractionation indicates that soluble CRM is not adsorbed to the 1000g pellet during fractionation.

The different subcellular distributions of these two structurally related lectins suggest that different tissues of the same plant may utilize lectins for different functions.

  相似文献   

6.
Mannose specific lectins of Vicia tetrasperma were purifiedby affinity chromatography with Sephadex G-100, and ion exchangechromatography. Chromatofocusing using PBE-94 gel was successfullyemployed to separate the major isolectins, lectin I and II.Both lectins had the same molecular weight of 78,000 and weretetramers composed of a uniform subunit with a molecular weightof 18,700. Amino acid compositions of these lectins were quitesimilar to each other, rich in aspartic acid (and/or asparagine)and hydroxyl amino acids, and lacking methionine and cysteine.Agar gel double diffusion using anti V. tetrasperma lectin antiserumrevealed that lectins from V. cracca, Pisum sativum, and Lensculinaris, all of which have mannose binding properties, wereantigenically identical. The antiserum reacted with the analogouslectins from V.faba, V. hirsuta, and V. angustifolia, but formationof a spur in the diffusion assay showed that they were slightlydifferent from V. tetrasperma lectin. (Received December 24, 1985; Accepted March 12, 1986)  相似文献   

7.
The seeds of Spartium junceum contained a large quantity of lectin-like protein that did not appear to be either a hemagglutinin or active lectin. The cross-reactive material (CRM), like most legume seed lectins, was a tetrameric glycoprotein of about 130,000 Mr. The singlesized subunits of about 33,000 Mr were not covalently associated. The amino acid composition was typical of legume lectins and was rich in hydroxy-amino acids and poor in sulfur-containing amino acids. The Spartium CRM contained about 3.5% covalently associated carbohydrate, most likely of the high-mannose type, since the CRM was precipitated by concanavalin A. The CRM was localized by electron-microscopic immunocytochemistry and found to be exclusively in protein-filled vacuoles (protein bodies). Because this protein was so similar immunologically, structurally, and in its physiology, to classic legume seed lectins, it is most likely a lectin homolog. Similar seed lectin CRMs appear to be both common and widespread in the Leguminosae.  相似文献   

8.
The binding-site specificities of lectins isolated from the seeds of Baihinia purpurea alba, Sophora japonica, and Wistaria floribunda were studied by hemagglutination-inhibition assays utilizing a variety of saccharides as inhibitors. For Bauhinia lectin, 2-acetamido-2-deoxy-d-galactose was found to be the best monosaccharide inhibitor and the free monosaccharide inhibitor was as active as its glycosides. d-Galactose was a weak inhibitor and so were some of its glycosides. Some of the oligosaccharides having a d-galactose nonreducing terminus were good inhibitors, but substitution on the d-galactose or 2-acetamido-2-deoxy-d-galactose residues with other saccharides abolished the inhibitory activity. No specificity for anomeric configuration or linkage position could be demonstrated. The presence of aromatic aglycon groups did not enhance inhibitory activity of the saccharides tested and, in some cases, the inhibitory activity was decreased. In contrast to the results for the Bauhinia lectin, compounds having aromatic aglycon groups were markedly better inhibitors for Sophora and Wistaria lectins than the corresponding compounds without aromatic aglycons. d-Galactose was a weak inhibitor for Sophora and Wistaria lectins, whereas 2-acetamido-d-galactose was a poor inhibitor of Sophora lectin but a good inhibitor of Wistaria lectin. Sophora and Wistaria lectins were somewhat similar in their activity as some of the saccharides having a d-galactose in penultimate position to an l-fucose residue were weak inhibitors. However, Sophora lectin has a binding preference for β anomers, whereas Wistaria lectin did not demonstrate a clear preference for α or β anomers. For some pairs of compounds, the α was a better inhibitor than, the β anomer; in other cases, the reverse was true.  相似文献   

9.
Hague DR 《Plant physiology》1975,55(4):636-642
Concanavalin A, the lectin of the Jack bean, Canavalia ensiformis, was extracted and compared with homologous proteins from Canavalia gladiata and Canavalia maritima. All proteins were bound to Sephadex G-100 and eluted from the gel with buffered glucose solution. Quantitative recoveries indicated that large quantities (23 to 28% of dry seed protein) of these lectins are synthesized by all three species. Antibody preparations made against C. ensiformis lectin failed to discriminate among the three proteins; the pattern of the precipitin bands indicated identical antigenic determinants in the Ouchterlony double-diffusion assay. Native and sodium dodecyl sulfate polyacryl-amide gel electrophoresis also failed to distinguish differences in the proteins. The storage protein active in carbohydrate binding is composed, in each case, of identical subunits. However, the amino acid composition of the subunit chains from the three sources is not identical. In particular, the lectins from C. ensiformis and C. gladiata contain two methionine residues per protein subunit, while only one methionine residue is found in the C. martima lectin. Cyanogen bromide cleavage of the purified subunit from C. maritima yieded two fragments with molecular weights estimated at 20,400 and 4,600, respectively. Amino acid analysis of the separated fragments indicated that the methionine residue at position 130 in C. ensiformis is absent in the lectin from C. maritima.  相似文献   

10.
The amounts of the two lectins (ricin and Ricinus communis agglutinin) in tissues of castor bean seedlings were followed during germination and early growth. For measurement, lectins in extracts were separately eluted from Sepharose columns; an antibody to the agglutinin was also used to detect the lectins by immunodiffusion. The endosperm of the dry seed contains 3.5 mg total lectin (5.6% of the total seed protein), which declines by 50% by day 4 and more rapidly thereafter as the tissue is completely consumed. The cotyledons of the dry seed also contain lectins but the amounts are less than 1% of those in the endosperm, and, as in the endosperm, they are constituents of the albumin fraction of the isolated protein bodies. No lectins were detected in the green cotyledons of 10-day seedlings that had been exposed to light from day 5. The embryonic axes of 2-day seedlings contained very small amounts of lectins but they were not detectable in the aerial parts of seedlings grown for 3 weeks or in cells from endosperm grown in tissue culture.

The ability of proteinases and glycosidases (isolated from endosperm of 4-day seedlings) to hydrolyze the lectins was examined. No hydrolysis of the two lectins was observed, but the subunits, separated by reduction with 2-mercaptoethanol, were hydrolyzed slowly by a proteinase and some release of mannose was observed in the presence of the glycosidases. Ricin was converted to its subunits by cysteine and an enzyme in an endosperm extract accelerated chain separation by glutathione.

  相似文献   

11.
The hemolymph of the Japanese horsehoe crab, Tachypleus tridentatus contains lectins which agglutinate mammalian erythrocytes. Affinity chromatographic purification of the lectins using bovine submaxillary gland mucin-conjugated Sepharose resulted in the separation of the lectins into four fractions; one major and three minor lectins. Protein subunits revealed by polyacrylamide gel electrophoresis and the immunoprecipitin line of these lectins against antiserum to crude lectins were unique to each fraction. The activities of all the lectins were optimal at pH values between 6 and 8, and were destroyed by heating at 60°C. Calcium chloride augumented the activities of three lectins, but the major lectin was not influenced by the salt. Bovine erythrocytes were not agglutinated by any of the lectins and comparative agglutination titers for other erythrocytes from various sources were different among these lectins. The activities of all the lectins were inhibited by N-acetylamino sugars. They were more effectively inhibited by glycoproteins which contain sialic acid.  相似文献   

12.
Two lectins were isolated from Robinia pseudoacacia (black locust) seeds using affinity chromatography on fetuin-agarose, and ion exchange chromatography on a Neobar CS column. The first lectin, R. pseudoacacia seed agglutinin I, referred to as RPsAI, is a homotetramer of four 34 kDa subunits whereas the second lectin, referred to as RPsAII, is composed of four 29 kDa polypeptides. cDNA clones encoding the polypeptides of RPsAI and RPsAII were isolated and their sequences were determined. Both polypeptides are translated from mRNAs of ca. 1.2 kb encoding a precursor carrying a signal peptide. Alignment of the deduced amino acid sequences of the different clones indicates that the 34 and 29 kDa seed lectin polypeptides show 95% sequence identity. In spite of this striking homology, the 29 kDa polypeptide has only one putative glycosylation site whereas the 34 kDa subunit has four of these sites. Carbohydrate analysis revealed that the 34 kDa possesses three carbohydrate chains whereas the 29 kDa polypeptide is only partially glycosylated at one site. A comparison of the deduced amino acid sequences of the two seed and three bark lectin polypeptides demonstrated unambiguously that they are encoded by different genes. This implies that five different genes are involved in the control of the expression of the lectins in black locust.Abbreviations LECRPAs cDNA clone encoding Robinia pseudoacacia seed lectin - LoLI Lathyrus ochrus isolectin I - PsA Pisum sativum agglutinin - RPbAI Robinia pseudoacacia bark agglutinin I - RPbAII Robinia pseudoacacia bark agglutinin II - RPsAI Robinia pseudoacacia seed agglutinin I - RPsAII Robinia pseudoacacia seed agglutinin II  相似文献   

13.
《Phytochemistry》1986,25(2):323-327
A lectin has been purified from L. capassa seed by ammonium sulphate fractionation and affinity chromatography on a column of D-galactose-derivatized Sepharose. The lectin is a glycoprotein which contains 3.8% neutral carbohydrates comprised of mannose, N-acetylglucosamine, xylose and fucose. The subunit M, of the lectin is 29 000, it has only alanine as N-terminal amino acid and contains 240 amino acids with a high content of acidic and hydroxy amino acids, single residues of methionine and histidine and the absence ofcystine. The lectin of L. capassa seed is a metalloprotein in that it contains 0.8 mol Ca2+ and 0.4 mol Mn2+ per mol. It agglutinates untreated human A, O and B type erythrocytes and rabbit erythrocytes. N-Acetyl-D-galactosamine was the best inhibitor. D-Galactose and various carbohydrates containing this sugar inhibit the hemagglutinating activity of the lectin. The lectin is also inhibited by D-glucose. The amino-terminal sequence of the lectin from L. capassa seed shows a significant degree of homology with many lectins from leguminous plants and is related to concanavalin A by a circularly permuted sequence homology.  相似文献   

14.
This work studied the effect of two cell-surface lectins isolated from the nitrogen-fixing soil bacterium Azospirillum brasilense Sp7 and from its mutant defective in hemagglutinating activity, A. brasilense Sp7.2.3, on the activities of α-glucosidase, β-glucosidase and β-galactosidase in the exocomponent, membrane and apoplast fractions of wheat-seedling roots. Lectin (40 μg mL−1) incubation for 1 h of the plant fractions increased the enzymes’ activities; both wild-type and mutant lectins were most stimulatory to the activities of all the exocomponent-fraction enzymes studied and to the apoplast-fraction β-glucosidase. Pretreatment of the lectins with their carbohydrate hapten, L-fucose, lowered the effect. The observed differences in the lectins’ ability to influence enzyme catalytic activity are explained by change in the antigenic properties of the mutant lectin.  相似文献   

15.
Lectin from a leaf of Erythrina indica was isolated by affinity chromatography on Lactamyl-Seralose 4B. Lectin gave a single band in polyacrylamide gel electrophoresis (PAGE). In SDS-gel electrophoresis under reducing and non-reducing conditions Erythrina indica leaf lectin (EiLL) split into two bands with subunit molecular weights of 30 and 33 kDa, whereas 58 kDa was obtained for the intact lectin by gel filtration on Sephadex G-100. EiLL agglutinated all human RBC types, with a slight preference for the O blood group. Lectin was found to be a glycoprotein with a neutral sugar content of 9.5%. The carbohydrate specificity of lectin was directed towards D-galactose and its derivatives with pronounced preference for lactose. EiLL had pH optima at pH 7.0; above and below this pH lectin lost sugar-binding capability rapidly. Lectin showed broad temperature optima from 25 to 50 degrees C; however, at 55 degrees C EiLL lost more than 90% of its activity and at 60 degrees C it was totally inactivated. The pI of EiLL was found to be 7.6. The amino acid analysis of EiLL indicated that the lectin was rich in acidic as well as hydrophobic amino acids and totally lacked cysteine and methionine. The N-terminal amino acids were Val-Glu-Thr-IIe-Ser-Phe-Ser-Phe-Ser-Glu-Phe-Glu-Ala-Gly-Asn-Asp-X-Leu-Thr-Gln-Glu-Gly-Ala-Ala-Leu-. Chemical modification studies of both EiLL and Erythrina indica seed lectin (EiSL) with phenylglyoxal, DEP and DTNB revealed an absence of arginine, histidine and cysteine, respectively, in or near the ligand-binding site of both lectins. Modification of tyrosine with NAI led to partial inactivation of EiLL and EiSL; however, total inactivation was observed upon NBS-modification of two tryptophan residues in EiSL. Despite the apparent importance of these tryptophan residues for lectin activity they did not seem to have a direct role in binding haptenic sugar as D-galactose did not protect lectin from inactivation by NBS.  相似文献   

16.
Peanut lectin was purified from seed meal of the Spanish and Jumbo Virginia varieties of peanut (Arachis hypogaea L.) by affinity chromatography on lactose coupled to Sepharose 4B. Polyacrylamide gel isoelectric focusing resolved the lectin preparation from Jumbo Virginia seeds into seven isolectins (pI 5.7, 5.9, 6.0, 6.2, 6.3, 6.5, and 6.7). Seed meal from the Spanish variety contained six isolectins which were indistinguishable from the pI 5.7, 5.9, 6.2, 6.3, 6.5, and 6.7 isolectins from Jumbo Virginia. Quantitative, lactose-specific hemagglutination was used to examine the lectins in tissues of both peanut varieties. In young (3- to 9-day-old) seedlings of each variety, more than 90% of the total amount of lectins detected in the plants was in the cotyledons. Most of the remainder was in hypocotyls, stems, and leaves; young roots contained no more than 4 micrograms of lectin per plant. Lectins were present in all nonroot tissues of 21- to 30-day-old seedlings, except 27-day-old Spanish hypocotyls. As cotyledons of each variety senesced, several of the more basic isolectins decreased to undetectable levels, but the acidic isolectins remained until at least 15 days after planting. Some of the seed isolectins and several apparently new lactose-binding lectins were also identified in affinity-purified extracts of 5-day-old roots and hypocotyls. Rabbit antibodies raised against the Jumbo Virginia seed isolectin preparation reacted with seed, cotyledon, and hypocotyl lectin preparations from both varieties. Analysis of seed lectin preparations from seven varieties of A. hypogaea and of a related species (A. villosulicarpa) indicated that isolectin composition in Arachis may be a characteristic of both the species and the subspecies (botanical type) to which the variety belongs.  相似文献   

17.
Preparations of probiotic bifidobacterial and lactobacillus lectins possessed system affinity to mannan and mucin-type polymers. It was shown that these lectins possess fungistatic and fungicidal activities against nystatin-resistant Candida albicans clinical strains. Lectins revealed destructive properties with respect to C. albicans and Staphylococcus aureus biofilms, depending on clinical strain origin and lectin preparation type. Synergistic antipathogen activities between lectins and between lectins and nystatin were observed. In the presence of lectins, pathogen biofilm degradation occurred in sequential steps, including biofilm refinement, appearance of edge cavities, segmentation, detachment of fragments and their lysis. Fungal response to lectins was more complex compared to that of staphylococci. Cold stress improved pictures of lectin antipathogen action. The data indicate that probiotic bacterial lectins are members of a new class of antimicrobials—destructors of pathogen biofilms.  相似文献   

18.
Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and –II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins.  相似文献   

19.
Hapten-inhibition studies showed that 3-O-methyl-D-glucose andmethyl--D-mannopyranoside, which are strong sugar haptens ofhemagglutination by pea seed lectins, inhibited (a) bindingof pea seed lectins with Rhizobium leguminosarum J357 cells,(b) the precipitin reaction of pea seed lectins with a capsularpolysaccharide from J357 cells and (c) adsorption of J357 cellsto a pea root. When the capsular polysaccharide was absorb edby the lectins or oxidized by periodate to remove the precipitinreactivity with the lectin, the inhibitory activity of the capsularpolysaccharide towards the adsorption disappeared. I.ectins,which were isolated from the bathing solution of pea roots inacid buffer (pH 2.1), were similar to the seed lectins in sugar-bindingspecificity. The possible existence of lectins on pea root hairsurface was shown by the indirect imraunofluorescent antibodytechnique in combination with the biotin-avidin system. Theseresults suggest that host recognition in Rhizobium-pea. symbiosisis based on the interaction between rhizobial cells and hostlectins. 1Present address: Nodai Research Institute, Tokyo Universityof Agriculture, Setagaya-ku, Tokyo 156, Japan. (Received February 18, 1981; Accepted May 2, 1981)  相似文献   

20.
A number of well characterized legume lectins including the enzymic lectin from Vigna radiata were examined for immunological relatedness. The immunological cross-reactions observed indicate that most of the legume lectins, including Vigna lectin, are evolutionarily closely related proteins. The possibility that these proteins are homologs with enzymic functions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号