首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The primary structure of the bglA gene region encoding a -glucosidase of Thermotoga maritima strain MSB8 was determined. The bglA gene has the potential to code for a polypeptide of 446 amino acids with a predicted molecular mass of 51545 Da. The T, maritima -glucosidase (BglA) was overexpressed in E. coli at a level comprising approximately 15–20% of soluble cellular protein. Based on its amino acid sequence, as deduced from the nucleotide sequence of the gene, BglA can be classified as a broad-specificity -glucosidase and as a member of the -glucosidase family BGA, in agreement with the results of enzymatic characterization of the recombinant protein. Comparative sequence analysis revealed distant amino acid sequence similarities between BGA family -glucosidases, a -xylosidase, -1,4-glycanases of the enzyme family F (mostly xylanases), and other families of -1,4-glycosyl hydrolases. This result indicates that BGA -glucosidases may comprise one enzyme family within a large enzyme order of retaining -glycosyl hydrolases, and that the members of these enzyme groups may be inter-related at the level of active site architecture and perhaps even on the level of overall three-dimensional fold.  相似文献   

2.
The primary structure of Rose-ringed Parakeet hemoglobin -chain was established, completing the analysis of this hemoglobin. Comparisons with other avian -chains show variations smaller than those for the corresponding -chains. There are 11 amino acid exchanges in relationship to the only other characterized psittaciform -chain, and a total of 35 positions are affected by differences among all avian -chains analyzed (versus 61 for the -chains). At three positions, the Psittacula -chain has residues unique to this species. Three 11 contacts are modified, by substitutions at positions 51, 116, and 125.  相似文献   

3.
Deposition of amyloid peptide in human brain in the form of senile plaques is a neuropathological hallmark of Alzheimers disease (AD). Levels of a phospholipid breakdown product, glycerophosphocholine (GPC), also increase in AD brain. The effect of GPC on amyloid (1–40) peptide (A) aggregation in PBS buffer was investigated by circular dichroism and fluoresence spectroscopy; interactions of A and GPC with the intact erythrocyte membrane was examined by fluoresence spectroscopy. Fluorescamine labeled A studies indicate GPC enhances A aggregation. CD spectroscopy reveals that A in the presence of GPC adopts 14% more -sheet structure than does A alone. Fluorescamine anisotropy measurements show that GPC and A interact in the phospholipid head-group region of the erythrocyte membrane. In summary, both soluble A and GPC insert into the phospholipid head-group region of the membrane where they interact leading to -sheet formation in soluble A which enhances A aggregation.  相似文献   

4.
Summary Few clinical responses have occurred in preliminary studies using the cytokines tumor necrosis factor (TNF) or interferon (IFN) in cancer patients. This may be related to the observation that many malignant cell lines are resistant to lysis by these cytokinesin vitro. Resistance to lysis by TNF or IFN in many cells is controlled by a protein-synthesis-dependent mechanism, such that when protein synthesis is inhibited cells become sensitive to lysis by these cytokines. Because there is some evidence that TNF and IFN act through different lytic mechanisms and are opposed by different resistance mechanisms, we treated a panel of eight cell lines, five derived from human cervical carcinomas (ME-180, MS751, SiHa, HT-3, and C-33A) and three derived from ovarian carcinomas (Caov-3, SK-OV-3, and NIH: OVCAR-3) with both TNF and IFN to determine whether such combination treatment might maximizein vitro cell lysis. Our results showed that pretreatment with IFN followed by exposure to TNF in the presence of protein synthesis inhibitors increased lysis of seven of the eight cell lines above that seen with either TNF or IFN and inhibitors of protein synthesis. Only the cell line C-33A was resistant to lysis by TNF and IFN, when exposed to these agents both alone and in combination with protein synthesis inhibitors. Clinically, combining the cytokines TNF and IFN with protein synthesis inhibitors may maximize thein vivo lytic effects of these cytokines.Supported by American Cancer Society Career Development Award 90-221  相似文献   

5.
To elucidate control mechanisms ofO-glycan biosynthesis in leukemia and to develop biosynthetic inhibitors we have characterized core 2 UDP-GlcNAc:Gal1-3GalNAc-R(GlcNAc to GalNAc) 6-N-acetylglucosaminyl-transferase (EC 2.4.1.102; core 2 6-GlcNAc-T) and CMP-sialic acid: Gal1-3GalNAc-R 3-sialyltransferase (EC 2.4.99.4; 3-SA-T), two enzymes that are significantly increased in patients with chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). We observed distinct tissue-specific kinetic differences for the core 2 6-GlcNAc-T activity; core 2 6-GlcNAc-T from mucin secreting tissue (named core 2 6-GlcNAc-T M) is accompanied by activities that synthesize core 4 [GlcNAc1-6(GlcNAc1-3)GalNAc-R] and blood group I [GlcNAc1-6(GlcNAc1-3)Gal-R] branches; core 2 6-GlcNAc-T in leukemic cells (named core 2 -GlcNAc-T L) is not accompanied by these two activities and has a more restricted specificity. Core 2 6-GlcNAc-T M and L both have an absolute requirement for the 4- and 6-hydroxyls ofN-acetylgalactosamine and the 6-hydroxyl of galactose of the Gal1-3GalNAc-benzyl substrate but the recognition of other substituents of the sugar rings varies, depending on the tissue. 3-sialytransferase from human placenta and from AML cells also showed distinct specificity differences, although the enzymes from both tissues have an absolute requirement for the 3-hydroxyl of the galactose residue of Gal1-3GalNAc-Bn. Gal1-3(6-deoxy)GalNAc-Bn and 3-deoxy-Gal1-3GalNAc-Bn competitively inhibited core 2 6-GlcNAc-T and 3-sialyltransferase activities, respectively.Abbreviations AFGP antifreeze glycoprotein - AML acute myeloid leukemia - Bn benzyl - CML chronic myelogenous leukemia - Fuc l-fucose - Gal, G d-galactose - GalNAc, GA N-acetyl-d-galactosamine - GlcNAc, Gn N-acetyl-d-glucosamine - HC human colonic homogenate - HO hen oviduct microsomes - HPLC high performance liquid chromatography - mco 8-methoxycarbonyl-octy - Me methyl - MES 2-(N-morpholino)ethanesulfonate - MK mouse kidney homogenate - onp o-nitrophenyl - PG pig gastric mucosal microsomes - pnp p-nitrophenyl - RC rat colonic mucosal microsomes - SA sialic acid - T transferase Enzymes: UDP-GlcNAc:Gal1-3GalNAc-R (GlcNAc to GalNAc) 6-N-acetylglucosaminyltransferase,O-glycan core 2 6-GlcNAc-transferase, EC 2.4.1.102; CMP-sialic acid: Gal1-3GalNAc-R 3-sialyltransferase,O-glycan 3-sialic acid-transferase, EC 2.4.99.4.  相似文献   

6.
The white rot basidiomycete Phanerochaete chrysosporium metabolized 4-ethoxy-3-methoxyphenyl-glycerol--guaiacyl ether (V) in low nitrogen, stationary cultures under which conditions the ligninolytic enzyme system is expressed. 4-Ethoxy-3-methoxyphenylglycerol XIII, guaicol and 4-ethoxy-3-methoxybenzyl alcohol (II) were isolated as metabolic products. Exogenously added XIII was rapidly converted to 4-ethoxy-3-methoxybenzyl alcohol indicating that it is an intermediate in the metabolism of V. P. chrysosporium also metabolized 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-3-hydroxypropane VI. The degradation pathway for this dimer also included initial -ether cleavage and -hydroxylation of the diol product 1-(4-ethoxy-3-methoxyphenyl) 2,3 dihydroxypropane (XI) to yield the triol XIII which was cleaved at the , bond to yield 4-ethoxy-3-methoxybenzyl alcohol. Finally P. chrysosporium also cleaved the dimer 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-hydroxypropane (VIII) at the -ether linkage yielding 1-(4-ethoxy-3-methoxyphenyl) 1,2 dihydroxypropane (IX) which was subsequently cleaved at the , bond to yield II. All of the results indicate that oxidative -ether cleavage is an important initial reaction in the metabolism of -aryl ether lignin substructure dimeric compounds. Metabolities were identified after comparison with chemically synthesized standards by gas liquid chromatography-mass spectrometry.Abbreviations GLC Gas liquid chromatography - TMSi trimethylsilyl - TLC thin layer chromatography  相似文献   

7.
Tumor promoters, proinflammatory cytokines, endotoxins, and protein synthesis inhibitors can modulate cell cycle kinetics of various cell types, stimulate production of reactive oxygen species, and induce keratinocytes to produce interleukin-8 (IL-8), a potent chemotactant for polymorphonuclear neutrophils and T lymphocytes. The aim of this study was to determine whether perturbations of cytogenetic responses correlated with the induction of IL-8 expression. Cultures of primary human keratinocytes were grown in serum-free medium with 5 mol/L bromodeoxyuridine to label DNA and exposed either to phorbol-13-myristate-12-acetate (PMA) (0.0001–100 ng/ml), cycloheximice (CHX) (0.01–50 g), lipopolysaccharide (0.1–100 g/ml), tumor necrosis factor- (TNF) (3.13–50 ng/ml), or interleukin-1 (IL-1) (1–182 pg/ml). Metaphase chromosome preparations were stained by a fluorescence-plus-Giemsa technique to differentiate sister chromatids. For IL-8 production, keratinocytes were grown to 70% confluency and then exposed to chemicals for 24 h. Immunoreactive IL-8 was quantitated from the supernatants by ELISA. With the exception of benzo(a)pyrene used as a positive control, none of the agents induced sister chromatid exchanges. However, PMA and TNF induced IL-8 production that coincided with significant cell cycle inhibition. IL-1 had no effect on cytogenetic endpoints, yet stimulated a 6.3-fold increase in IL-8. CHX inhibited cell cycle progression and mitotic activity at concentrations that were 200 times lower than required for IL-8 induction; however, puromycin (0.31–10 g/ml), another protein synthesis inhibitor, did not induce IL-8. At all concentrations tested, TNF reduced the mitotic index by 45%, slowed cell cycle progression by 3.5 h, and induced a flat, albeit large, IL-8 response at concentrations 12.5 ng/ml. These agent-specific response patterns suggest that induction of IL-8 production is not always the inevitable result of cell cycle perturbations or genetic damage.Abbreviations B(a)P benzo(a)pyrene - BrdU 5-bromo-2-deoxyuridine - CHX cycloheximide - ICAM intercellular adhesion molecules - IL-1 interleukin-1 - IL-8 interleukin-8 - KGM keratinocyte growth medium - LPS lipopolysaccharide - PKC protein kinase C - PMA phorbol-13-myristate-12-acetate - PMN polymorphonuclear neutrophil - ROS reactive oxygen species - SCE sister chromatid exchange - TNF tumor necrosis factor   相似文献   

8.
Substantial quantities of mRNA encoding the abundant Em polypeptide accumulate, in planta, in developing embryos of maize (Zea mays L.). By contrast, accumulation of Em mRNA is only barely detectable in embryos with the vp-5/vp-5 genotype [an abscisic acid (ABA)-deficient viviparous phenotype]. Em mRNA is not detectable within viviparous embryos of the vp-1/vp-1 genotype that are non-responsive to ABA. Culture of immature wild-type and vp-5/vp-5 embryos in the presence of exogenous ABA or of an osmotically active agent prevents precocious germination and results in expression of the Em genes. When vp-1/vp-1 embryos are cultured under similar conditions, only the application of osmotic stress prevents precocious germination. However, Em mRNA does not accumulate either in ABA-treated or stressed, arrested embryos, indicating a requirement for ABA perception through a VP-1-mediated mechanism for Em gene expression. Nevertheless, vp-1/vp-1 embryos do show both ABA and stress responses at the molecular level. Treatment with ABA causes the accumulation of mRNA encoding a polypeptide of approx. 30 kDa, whilst osmotic stress induces the accumulation both of a 30-kDa polypeptide and a set of approx. 20-kDa polypeptides. This indicates the existence of discrete, parallel ABA and stress response pathways in developing maize embryos.Abbreviations ABA abscisic acid - cDNA copy-DNA - DAP days after pollination - kDa kilodaltons - MS Murashige and Skoog medium - LEA late embryogenesis abundant - NEpHGE non-equilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

9.
The effect of intraperitoneal administration of tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the tocopherol treated group were not observed. The light emission was significantly higher in the control than in the tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbateFe2+ lipid peroxidation. The protector effect observed by tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

10.
Genomic DNA and cDNA encoding the -amylase from the oomycete, Saprolegnia ferax, were cloned into Saccharomyces cerevisiae and analyzed. The Spl. ferax -amylase gene consisted of a 1350 bp open reading frame, encoding a protein of 450 amino acids with a calculated mass of 49353 Da, and was not interrupted by any intron. The deduced amino acid sequence of the -amylase gene had 42% similarity to the -amylase of Arabidopsis thaliana. The -amylase gene was expressed in Sacc. cerevisiae and its product was secreted into the culture medium.  相似文献   

11.
This study reports a novel splice variant form of the voltage-dependent calcium channel 2 subunit (2g). This variant is composed of the conserved amino-terminal sequences of the 2a subunit, but lacks the -subunit interaction domain (BID), which is thought essential for interactions with the 1 subunit. Gene structure analysis revealed that this gene was composed of 13 translated exons spread over 107 kb of the genome. The gene structure of the 2 subunit was similar in exon-intron organization to the murine 3 and human 4 subunits. Electrophysiological evaluation revealed that 2a and 2g affected channel properties in different ways. The 2a subunit increased the peak amplitude, but failed to increase channel inactivation, while 2g had no significant effects on either the peak current amplitude or channel inactivation. Other subunits, such as 3 and 4, significantly increased the peak current and accelerated current inactivation.  相似文献   

12.
Unravelling the factors that contribute to the formation and the stability of -sheet structure in peptides is a subject of great current interest. A -hairpin, the smallest -sheet motif, consists of two antiparallel hydrogen-bonded -strands linked by a loop region. We have performed a statistical analysis on protein -hairpins showing that the most abundant types of -hairpins, 2:2, 3:5 and 4:4, have characteristic patterns of 13C and 13C conformational shifts, as expected on the basis of their and angles. This fact strongly supports the potential value of 13C and 13C conformational shifts as a means to identify -hairpin motifs in peptides. Their usefulness was confirmed by analysing the patterns of 13C and 13C conformational shifts in 13 short peptides, 10–15 residues long, that adopt -hairpin structures in aqueous solution. Furthermore, we have investigated their potential as a method to quantify -hairpin populations in peptides.  相似文献   

13.
Summary Wheat accessions lacking some of the - and -gliadin components encoded by the Gli-1 loci on the short arm of chromosome 1D in bread wheat and chromosome 1A in durum wheat were studied by two-dimensional polyacrylamide gel electrophoresis and restriction fragment analysis. Digested genomic DNAs of normal and null forms were probed with a cDNA clone related to -/-gliadins and with a genomic clone encoding an LMW subunit of glutenin. The hybridisation patterns with the -/-gliadin probe were similar to those of cvs Chinese Spring and Langdon used as standards for bread and durum wheats, respectively, but several restriction fragments located on the 1D chromosome of bread wheat and the 1A chromosome of durum wheat were absent in the null forms. In addition, specific LMW glutenin fragments encoded by the same chromosomes were also absent in the null forms, suggesting that simultaneous deletions of blocks of genes for both -/-gliadins and LMW glutenins had occurred. Comparisons of the protein and RFLP patterns enabled some proteins to be mapped to specific restriction fragments.  相似文献   

14.
    
An 1,3-fucosyltransferase was purified 3000-fold from mung bean seedlings by chromatography on DE 52 cellulose and Affigel Blue, by chromatofocusing, gelfiltration and affinity chromatography resulting in an apparently homogenous protein of about 65 kDa on SDS-PAGE. The enzyme transferred fucose from GDP-fucose to the Asn-linkedN-acetylglucosaminyl residue of an N-glycan, forming an 1,3-linkage. The enzyme acted upon N-glycopeptides and related oligosaccharides with the glycan structure GlcNAc2Man3 GlcNAc2. Fucose in 1,6-linkage to the asparagine-linked GlcNAc had no effect on the activity. No transfer to N-glycans was observed when the terminal GlcNAc residues were either absent or substituted with galactose.N-acetyllactosamine, lacto-N-biose andN-acetylchito-oligosaccharides did not function as acceptors for the 1,3-fucosyltransferase.The transferase exhibited maximal activity at pH 7.0 and a strict requirement for Mn2+ or Zn2+ ions. The enzyme's activity was moderately increased in the presence of Triton X-100. It was not affected byN-ethylmaleimide.Abbreviations 1,3-Fuc-T GDP-fucose:-N-acetylglucosamine(Fuc to Asn-linked GlcNAc)1,3-fucosyltransferase - 1,6-Fuc-T GDP-fucose:-N-acetylglucosamine(Fuc to Asn-linked GlcNAc) 1,6-fucosyltransferase - PA pyridylamino - GnGn GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4GlcNAc - GnGnF3 GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc - GnGnF6 GlcNAc1-2-Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc - GnGnF3F6 GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-3)[Fuc1-6]GlcNAc - MM Man1-6(Man1-3)Man1-4GlcNAc1-4GlcNAc - MMF3 Man1-6(Man1-3)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc - MMF3F6 Man1-6(Man1-3)Man1-4GlcNAc1-4(Fuc1-3)[Fuc1-6]GlcNAc  相似文献   

15.
Methylaspartase (EC 4.3.1.2) was purified 20fold in 35% yield from Fusobacterium varium, an obligate anaerobe. The purification steps included heat treatment, fractional precipitation with ammonium sulfate and ethanol, gel filtration, and ion exchange chromatography on DEAESepharose. The enzyme is dimeric, consisting of two identical 46 kDa subunits, and requires Mg2+ (Km = 0.27 ± 0.01 mM) and K+ (Km = 3.3 ± 0.8 mM) for maximum activity. Methylaspartasecatalyzed addition of ammonia to mesaconate yielded two diastereomeric amino acids, identified by HPLC as (2S,3S)3methylaspartate (major product) and (2S,3R)3methylaspartate (minor product). Optimal activity for the deamination of (2S,3S)3methylaspartate (Km = 0.51 ± 0.04 mM) was observed at pH 9.7. The Nterminal protein sequence (30 residues) of the F. varium enzyme is 83% identical to the corresponding sequence of the clostridial enzyme.  相似文献   

16.
A Gal1-4GlcNAc (2-6)-sialyltransferase from human liver was purified 34 340-fold with 18% yield by dye chromatography on Cibacron Blue F3GA and cation exchange FPLC. The enzyme preparation was free of other sialyltransferases. It did not contain CMP-NeuAc hydrolase, protease, or sialidase activity, and was stable at –20°C for at least eight months. The donor substrate specificity was examined with CMP-NeuAc analogues modified at C-5 or C-9 of theN-acetylneuraminic acid moiety. Affinity of the human enzyme for parent CMP-NeuAc and each CMP-NeuAc analogue was substantially higher than the corresponding Gal1-4GlcNAc (2-6)-sialyltransferase from rat liver.Abbreviations FPLC fast protein liquid chromatography - NeuAc 5-N-acetyl-d-neuraminic acid - 9-amino-NeuAc 5-acetamido-9-amino-3,5,9-trideoxy-d-glycero-2-nonulosonic acid - 9-acetamido-NeuAc 5,9-diacetamido-3,5,9-trideoxy-d-glycero--d-2-nonulosonic acid - 9-benzamido-NeuAc 5-acetamido-9-benzamido-3,5,9-trideoxy-d-glycero--d-galacto-2-nonulosonic acid - 9-fluoresceinyl-NeuAc 9-fluoresceinylthioureido-NeuAc - 5-formyl-Neu 5-formyl--d-neuraminic acid - 5-aminoacetyl-Neu 5-aminoacetyl--d-neuraminic acid - CMP-NeuAc cytidine-5-monophospho-N-acetylneuraminic acid - GM1 Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc-ceramide - ST sialyltransferase - DTE 1,4-dithioerythritol Enzyme: Gal1-4GlcNAc (2-6)-sialyltransferase, EC 2.4.99.1.  相似文献   

17.
The mechanism of uptake of water-insoluble -sitosterol by a newly isolated strain of Arthrobacter simplex SS-7 was studied. The production of an extracellular sterol-pseudosolubilizing protein during growth of A. simplex on -sitosterol was demonstrated by isolating the factor from the cell-free supernatant and its subsequent purification by Sephadex G-150 column chromatography. The M r of the purified sterol-pseudosolubilizing protein determined by SDS–PAGE was 19kDa. The rate of sterol pseudosolubilization (5.2×10–3g l–1h–1) could not adequately account for the rate of sterol uptake (72×10–3g l–1h–1) and the specific growth rate (56×10–3 h–1). However in the unfavourable growth condition, when the cells were treated with sodium azide at the level of 30–60% of MIC, the sterol pseudosolubilization accounted for nearly 74% of the total growth containing 96% free cells. Cellular adherence to substrate particles was found to play an active role in the normal growth of the strain on -sitosterol. Unlike sodium acetate-grown cells, whose surface activity was negligible (60mNm–1), the sterol-grown cells had strong surface activity (40mNm–1). The high lipid content and long chain fatty acids in the cell-wall of -sitosterol-grown cells probably contribute to the high sterol adherence activity of the cells.  相似文献   

18.
The sialyl-α2,6-lactosaminyl-structure: Biosynthesis and functional role   总被引:1,自引:0,他引:1  
Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found ,3- or ,6-linked to galactose (Gal), ,6-linked to N-acetylgalactosamine (GalNAc) or ,8-linked to another sialic acid. The biosynthesis of the various linkages is mediated by the different members of the sialyltransferase family. The addition of sialic acid in ,6-linkage to the galactose residue of lactosamine (type 2 chains) is catalyzed by -galactoside ,6-sialyltransferase (ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. The cognate oligosaccharide structure, NeuAc,6Gal1,4GIcNAc, is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. This review summarizes the current knowledge on the biochemistry of ST6Gal.I and on the functional role of the sialyl-,6-lactosaminyl structure.  相似文献   

19.
Summary The potential of-lactams as intermediates for the access to- and-amino acid-derived peptides is shortly reviewed, with major focus on the technologies developed in our group. The two general strategies lie, on one side, in the oxidative ring expansion of 3-hydroxy-lactams toN-carboxy-amino acid anhydrides or Leuch's anhydrides and subsequent coupling with-amino acid esters and, on the other side, in the nucleophilic ring opening ofN-Boc--lactams. Both approaches have been successfully applied to the synthesis of,-diamino acid,-amino--hydroxy acid, polyhydroxylated-amino acid,,-disubstituted-amino acid,-amino acid,-amino--hydroxy acid and,-disubstituted-amino acid derived peptides. Because of the mild reaction conditions needed for the above transformations and the highly stereoselective procedures employed for the construction of the starting-lactam ring, the whole process allows the production of optically pure final products.  相似文献   

20.
Krutyakov  V. M. 《Molecular Biology》2004,38(5):696-705
Original and published data on the antimutagenic role of autonomous 3 5-exonucleases (AE) are analyzed. AE are not bound covalently to DNA polymerases but are often involved in replicative complexes. AE overproduction in bacterial cells is accompanied by a sharp suppression of mutagenesis, whereas AE inactivation in bacteria and higher fungi results in the increase in mutation rates by two to three orders of magnitude. The combined action of AE and DNA polymerases substantially improves the fidelity of their functioning in vitro. The fidelity of nuclease-free DNA polymerases and increases by two to three orders of magnitude in the presence of AE. The fidelity of moderately processive DNA polymerase I increases by two orders of magnitude, and that of highly processive DNA polymerase increases by a factor of 5–10, although both these polymerases possess their own 3 5-exonucleolytic activity. In biochemical experiments, AE was shown to participate directly in the correction of errors made by DNA polymerase I. The presence of AE in multienzyme DNA polymerase complexes increases their fidelity by a factor of 5–10. A model of extrinsic proofreading by AE in DNA biosynthesis is proposed. An investigation of thirty objects from all three kingdoms of life (from archaea and bacteria to mammals, including humans) has shown that AE account for 30–90% of the total cellular 3 5-exonucleolytic activity. Therefore, AE increase significantly the intracellular ratio of 3 5-exonuclease to DNA polymerase activities in a wide phylogenetic variety of species, which always leads to the increasing fidelity of DNA biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号