首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞周期是高度有组织的时序调控过程,受到DNA损伤检控点、DNA复制检控点和纺锤体检控点等细胞周期检控点的精确调控。细胞周期检控点的作用主要是调节细胞周期的时序转换,以确保DNA复制、染色体分离等细胞重要生命活动的高度精确性,并对DNA损伤、DNA复制受阻、纺锤体组装和染色体分离异常等细胞损伤及时做出反应,以防止突变和遗传不稳定的发生。细胞周期检控点的功能缺陷,将导致细胞基因组的不稳定,与细胞癌变密切相关。因此细胞周期检控点对于维持细胞遗传信息的稳定性和完整性以及防止细胞癌变和遗传疾病的发生起着至关重要的作用。  相似文献   

2.
Potassium channels are multi-subunit transmembrane proteins that permit the selective passage of potassium and play fundamental roles in physiological processes, such as action potentials in the nervous system and organismal salt and water homeostasis, which is mediated by the kidney. Like all ion channels, newly translated potassium channels enter the endoplasmic reticulum (ER) and undergo the error-prone process of acquiring post-translational modifications, folding into their native conformations, assembling with other subunits, and trafficking through the secretory pathway to reach their final destinations, most commonly the plasma membrane. Disruptions in these processes can result in detrimental consequences, including various human diseases. Thus, multiple quality control checkpoints evolved to guide potassium channels through the secretory pathway and clear potentially toxic, aggregation-prone misfolded species. We will summarize current knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway, highlight diseases associated with channel misfolding, and suggest potential therapeutic routes.  相似文献   

3.
Integral membrane proteins are synthesized on the cytoplasmic face of the endoplasmic reticulum (ER). After being translocated or inserted into the ER, they fold and undergo post-translational modifications. Within the ER, proteins are also subjected to quality control checkpoints, during which misfolded proteins may be degraded by proteasomes via a process known as ER-associated degradation. Molecular chaperones, including the small heat shock protein alphaA-crystallin, have recently been shown to play a role in this process. We have now found that alphaA-crystallin is expressed in cultured mouse collecting duct cells, where apical Na(+) transport is mediated by epithelial Na(+) channels (ENaC). ENaC-mediated Na(+) currents in Xenopus oocytes were reduced by co-expression of alphaA-crystallin. This reduction in ENaC activity reflected a decrease in the number of channels expressed at the cell surface. Furthermore, we observed that the rate of ENaC delivery to the cell surface of Xenopus oocytes was significantly reduced by co-expression of alphaA-crystallin, whereas the rate of channel retrieval remained unchanged. We also observed that alphaA-crystallin and ENaC co-immunoprecipitate. These data are consistent with the hypothesis that small heat shock proteins recognize ENaC subunits at ER quality control checkpoints and can target ENaC subunits for ER-associated degradation.  相似文献   

4.
The NLRP3 inflammasome is a vital part of the innate immune response, whilst its aberrant activation drives the progression of a number of non-communicable diseases. Thus, NLRP3 inflammasome assembly must be tightly controlled at several checkpoints. The priming step of NLRP3 inflammasome activation is associated with increased NLRP3 gene expression, as well as post-translational modifications that control NLRP3 levels and licence the NLRP3 protein for inflammasome assembly. Increasing life expectancy in modern society is accompanied by a growing percentage of elderly individuals. The process of aging is associated with chronic inflammation that drives and/or worsens a range of age related non-communicable conditions. The NLRP3 inflammasome is known to contribute to pathological inflammation in many settings, but the mechanisms that prime NLRP3 for activation throughout aging and related co-morbidities have not been extensively reviewed. Here we dissect the biochemical changes that occur during aging and the pathogenesis of age related diseases and analyse the mechanisms by which they prime the NLRP3 inflammasome, thus exacerbating inflammation.  相似文献   

5.
Protein glycosylation is a common post-translational modification and has been increasingly recognized as one of the most prominent biochemical alterations associated with malignant transformation and tumorigenesis. N-linked glycosylation is prevalent in proteins on the extracellular membrane, and many clinical biomarkers and therapeutic targets are glycoproteins. Here, we describe a protocol for solid-phase extraction of N-linked glycopeptides and subsequent identification of N-linked glycosylation sites (N-glycosites) by tandem mass spectrometry. The method oxidizes the carbohydrates in glycopeptides into aldehydes, which can be immobilized on a solid support. The N-linked glycopeptides are then optionally labeled with a stable isotope using deuterium-labeled succinic anhydride and the peptide moieties are released by peptide-N-glycosidase. In a single analysis, the method identifies hundreds of N-linked glycoproteins, the site(s) of N-linked glycosylation and the relative quantity of the identified glycopeptides.  相似文献   

6.
7.
Biosynthesis and folding of multidomain transmembrane proteins is a complex process. Structural fidelity is monitored by endoplasmic reticulum (ER) quality control involving the molecular chaperone calnexin. Retained misfolded proteins undergo ER-associated degradation (ERAD) through the ubiquitin-proteasome pathway. Our data show that the major degradation pathway of the cystic fibrosis transmembrane conductance regulator (CFTR) with F508del (the most frequent mutation found in patients with the genetic disease cystic fibrosis) from the ER is independent of calnexin. Moreover, our results demonstrate that inhibition of mannose-processing enzymes, unlike most substrate glycoproteins, does not stabilize F508del-CFTR, although wild-type (wt) CFTR is drastically stabilized under the same conditions. Together, our data support a novel model by which wt and F508del-CFTR undergo ERAD from two distinct checkpoints, the mutant being disposed of independently of N-glycosidic residues and calnexin, probably by the Hsc70/Hsp70 machinery, and wt CFTR undergoing glycan-mediated ERAD.  相似文献   

8.
Glycosidase inhibitors: update and perspectives on practical use   总被引:13,自引:0,他引:13  
Asano N 《Glycobiology》2003,13(10):93R-104R
About 40 years have passed since the classical glycosidase inhibitor nojirimycin was discovered from the cultured broth of the Streptomyces species. Since then, over 100 glycosidase inhibitors have been isolated from plants and microorganisms. Modifying or blocking biological processes by specific glycosidase inhibitors has revealed the vital functions of glycosidases in living systems. Because enzyme-catalyzed carbohydrate hydrolysis is a biologically widespread process, glycosidase inhibitors have many potential applications as agrochemicals and therapeutic agents. Glycosidases are involved in the biosynthesis of the oligosaccharide chains and quality control mechanisms in the endoplasmic reticulum of the N-linked glycoproteins. Inhibition of these glycosidases can have profound effects on quality control, maturation, transport, and secretion of glycoproteins and can alter cell-cell or cell-virus recognition processes. This principle is the basis for the potential use of glycosidase inhibitors in viral infection, cancer, and genetic disorders. In this review, the past and current applications of glycosidase inhibitors to agricultural and medical fields and the prospect for new therapeutic applications are reconsidered.  相似文献   

9.
A DNA structure checkpoint can be defined as any checkpoint which responds to changes in the structure of the DNA either through the cell cycle, or in response to outside events such as DNA damage. Genetic analysis of DNA structure checkpoints in fission yeast has identified several distinct pathways responding to different circumstances. Three checkpoints have been identified which inhibit the onset of mitosis. (1) A radiation checkpoint which prevents mitosis after DNA damage. (2) A checkpoint linking S phase and mitosis (the S-M checkpoint) that prevents mitosis when DNA synthesis is incomplete. (3) A checkpoint linking G1 to mitosis (the G1-M checkpoint) that prevents the onset of mitosis in cells which are arrested in the G1 period of the cycle. A large number of genetic loci that are required for these checkpoints have been identified through mutant analysis, and the involvement of the relevant genes with the individual checkpoint pathways has been investigated. The largest class of checkpoint genes, known as the ‘checkpoint rad’ genes, are required for all the DNA structure checkpoints and the evidence suggests that they may also be involved in regulating DNA synthesis following precursor deprivation (hydroxyurea treatment) or when the replication fork encounters DNA damage. In this review, the available genetic and physiological evidence has been interpreted to suggest a close association between the ‘checkpoint rad’ class of gene products and the DNA-protein complexes that regulate and perform DNA synthesis. Biochemical evidence will be required in order to prove or disprove this hypothesis.  相似文献   

10.
It is now well known that the addition and trimming of oligosaccharide side chains during post-translational modification play an important role in determining the fate of secretory, membrane, and lysosomal glycoproteins. Recent studies have suggested that trimming of oligosaccharide side chains also plays a role in the degradation of misfolded glycoproteins as a part of the quality control mechanism of the endoplasmic reticulum (ER). In this study, we examined the effect of several inhibitors of carbohydrate processing on the fate of the misfolded secretory protein alpha1 antitrypsin Z. Retention of this misfolded glycoprotein in the ER of liver cells in the classical form of alpha1 antitrypsin (alpha1-AT) deficiency is associated with severe liver injury and hepatocellular carcinoma and lack of its secretion is associated with destructive lung disease/emphysema. The results show marked alterations in the fate of alpha1 antitrypsin Z (alpha1-ATZ). Indeed, one glucosidase inhibitor, castanospermine (CST), and two mannosidase inhibitors, kifunensine (KIF) and deoxymannojirimycin (DMJ), mediate marked increases in secretion of alpha1-ATZ by distinct mechanisms. The effects of these inhibitors on secretion have interesting implications for our understanding of the quality control apparatus of the ER. These inhibitors may also constitute models for development of additional drugs for chemoprophylaxis of liver injury and emphysema in patients with alpha1-AT deficiency.  相似文献   

11.
Protein glycosylation, the most universal and diverse post-translational modification, can affect protein secretion, stability, and immunogenicity. The structures of glycans attached to proteins are quite diverse among different organisms and even within yeast species. In yeast, protein glycosylation plays key roles in the quality control of secretory proteins, and particularly in maintaining cell wall integrity. Moreover, in pathogenic yeasts, glycans assembled on cell-surface glycoproteins can mediate their interactions with host cells. Thus, a comprehensive understanding of protein glycosylation in various yeast species and defining glycan structure characteristics can provide useful information for their biotechnological and clinical implications. Yeast-specific glycans are a target for glyco-engineering; implementing human-type glycosylation pathways in yeast can aid the production of recombinant glycoproteins with therapeutic potential. The virulenceassociated glycans of pathogenic yeasts could be exploited as novel targets for antifungal agents. Nowadays, several glycomics techniques facilitate the generation of species-and strain-specific glycome profiles and the delineation of modified glycan structures in mutant and engineered yeast cells. Here, we present the protocols employed in our laboratory to investigate the N-and O-glycan chains released from purified glycoproteins or cell wall mannoproteins in several yeast species.  相似文献   

12.
HEp-2 cells or Vero cells infected with herpes simplex virus type 1 were exposed to the ionophore monensin, which is thought to block the transit of membrane vesicles from the Golgi apparatus to the cell surface. We found that yields of extracellular virus were reduced to less than 0.5% of control values by 0.2 microM monensin under conditions that permitted accumulation of cell-associated infectious virus at about 20% of control values. Viral protein synthesis was not inhibited by monensin, whereas late stages in the post-translational processing of the viral glycoproteins were blocked. The transport of viral glycoproteins to the cell surface was also blocked by monensin. Although the assembly of nucleocapsids appeared to be somewhat inhibited in monensin-treated cells, electron microscopy revealed that nucleocapsids were enveloped to yield virions, and electrophoretic analyses showed that the isolated virions contained immature forms of the envelope glycoproteins. Most of the virions which were assembled in monensin-treated cells accumulated in large intracytoplasmic vacuoles, whereas most of the virions produced by and associated with untreated cells were found attached to the cell surface. Our results implicate the Golgi apparatus in the egress of herpes simplex virus from infected cells and also suggest that complete processing of the viral envelope glycoproteins is not essential for nucleocapsid envelopment or for virion infectivity.  相似文献   

13.
The endoplasmic reticulum (ER) is the major site for folding and sorting of newly synthesized secretory cargo proteins. One central regulator of this process is the quality control machinery, which retains and ultimately disposes of misfolded secretory proteins before they can exit the ER. The ER quality control process is highly effective and mutations in cargo molecules are linked to a variety of diseases. In mammalian cells, a large number of secretory proteins, whether membrane bound or soluble, are asparagine (N)-glycosylated. Recent attention has focused on a sugar transferase, UDP-Glucose: glycoprotein glucosyl transferase (UGGT), which is now recognized as a constituent of the ER quality control machinery. UGGT is capable of sensing the folding state of glycoproteins and attaches a single glucose residue to the Man9GlcNAc2 glycan of incompletely folded or misfolded glycoproteins. This enables misfolded glycoproteins to rebind calnexin and reenter productive folding cycles. Prolonging the time of glucose addition on misfolded glycoproteins ultimately results in either the proper folding of the glycoprotein or its presentation to an ER associated degradation machinery.  相似文献   

14.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

15.
Alcoholic liver disease (ALD) is a prominent cause of morbidity and mortality in the United States. Alterations in protein folding occur in numerous disease states, including ALD. The endoplasmic reticulum (ER) is the primary site of post-translational modifications (PTM) within the cell. Glycosylation, the most abundant PTM, affects protein stability, structure, localization, and activity. Decreases in hepatic glycosylation machinery have been observed in rodent models of ALD, but specific protein targets have not been identified. Utilizing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry, glycoproteins were identified in hepatic microsomal fractions from control and ethanol-fed mice. This study reports for the first time a global decrease in ER glycosylation. Additionally, the identification of 30 glycoproteins within this fraction elucidates pathway-specific alterations in ALD impaired glycosylation. Among the identified proteins, triacylglycerol hydrolase (TGH) is positively affected by glycosylation, showing increased activity following the addition of sugar moieties. Impaired TGH activity is associated with increased cellular storage of lipids and provides a potential mechanism for the observed pathologies associated with ALD.  相似文献   

16.
Lectins and traffic in the secretory pathway   总被引:7,自引:0,他引:7  
Hauri H  Appenzeller C  Kuhn F  Nufer O 《FEBS letters》2000,476(1-2):32-37
Evidence is accumulating that intracellular animal lectins play important roles in quality control and glycoprotein sorting along the secretory pathway. Calnexin and calreticulin in conjunction with associated chaperones promote correct folding and oligomerization of many glycoproteins in the endoplasmic reticulum (ER). The mannose lectin ERGIC-53 operates as a cargo receptor in transport of glycoproteins from ER to Golgi and the homologous lectin VIP36 may operate in quality control of glycosylation in the Golgi. Exit from the Golgi of lysosomal hydrolases to endosomes requires mannose 6-phosphate receptors and exit to the apical plasma membrane may also involve traffic lectins. Here we discuss the features of these lectins and their role in glycoprotein traffic in the secretory pathway.  相似文献   

17.
ADAM metalloproteases are membrane bound glycoproteins that control many biological processes during development and differentiation, mainly by acting as ectodomain sheddases. The Drosophila genome contains five genes that code for classical ADAM proteins which are characterized by a highly conserved domain structure with the respective catalytic domains facing the extracellular space. More than 50 genes encode related proteins such as those that have lost their primary enzymatic activity while retaining, e.g., their adhesive properties. The physiological relevance of many Drosophila ADAMs and their relatives is still unknown, however for others, a striking role during organogenesis and tissue maintenance has been demonstrated during the last few years. We have carried out genetic screenings combined with candidate approaches, aiming to identify new components involved in cardiogenesis and muscle differentiation. Herein we summarize our results with a particular focus on metalloproteases with known or potential roles in tissue differentiation.  相似文献   

18.
While only about ten percent of the databank entries are defined as glycoproteins, it has been estimated recently that more than half of all proteins are glycoproteins. Mucin-type O-glycosylation is a widespread post-translational modification of proteins found in the entire animal kingdom, but also in higher plants. The structural complexity of the chains initiated by O-linked GalNAc exceeds that of N-linked chains by far. The process during which serine and threonine residues of proteins become modified is confined to the cis to trans Golgi compartments. The initiation of this process by peptidyl GalNAc-transferases is ruled by the sequence context of putative O-glycosylation sites, but also by epigenetic regulatory mechanisms, which can be mediated by enzyme competition. The cellular repertoir of glycosyltransferases with their distinct donor sugar and acceptor sugar specificities, their sequential action at highly-ordered surfaces, and their localizations in subcompartments of the Golgi finally determine the cell-specific O-glycosylation profile. Dramatic alterations of the glycosylation machinery are observed in cancer cells, resulting in aberrantly O-glycosylated proteins that expose previously masked peptide motifs and new antigenic targets. The functional aspects of O-linked glycans, which comprise among many others their potential role in sorting and secretion of glycoproteins, their influence on protein conformation, and their multifarious involvement in cell adhesion and immunological processes, appear as complex as their structures.  相似文献   

19.
Glycosylation is the most important and abundant post-translational modification in serum proteome. Several specific types of glycan epitopes have been shown to be associated with various types of disease. Direct analysis of serum glycoproteins is challenging due to its wide dynamic range. Alternatively, glycoproteins can be discovered in the secretome of model cell lines and then confirmed in blood. However, there has been little experi-mental evidence showing cell line secretome as a tractable target for the study of serum glycoproteins. We used a hydrazine-based glycocapture method to selectively enrich glycoproteins from the secretome of the breast cancer cell line Hs578T. A total of 132 glycoproteins were identified by nanoLC-MS/MS analysis. Among the identified proteins, we selected 13 proteins that had one or more N-glycosylation motifs in the matched peptides, which were included in the Secreted Protein Database but not yet in the Plasma Proteome Database (PPD), and whose antibodies were commercially available. Nine out of the 13 selected proteins were detected from human blood plasma by western analysis. Furthermore, eight proteins were also detected from the plasma by targeted LC-MS/MS, which had never been previously identified by data-dependent LC-MS/MS. Our results provide novel proteins that should be enrolled in PPD and suggest that analysis of cell line secretome with subfractionation is an efficient strategy for discovering disease-relevant serum proteins.  相似文献   

20.
Glycosylation, and especially O-linked glycosylation, remains a critical blind spot in the understanding of post-translational modifications. Due to their nature as proteins defined by a large density and abundance of O-glycosylation, mucins present extra challenges in the analysis of their structure and function. However, recent breakthroughs in multiple areas of research have rendered mucin-domain glycoproteins more accessible to current characterization techniques. In particular, the adaptation of mucinases to glycoproteomic workflows, the manipulation of cellular glycosylation pathways, and the advances in synthetic methods to more closely mimic mucin domains have introduced new and exciting avenues to study mucin glycoproteins. Here, we summarize recent developments in understanding the structure and biological function of mucin domains and their associated glycans, from glycoproteomic tools and visualization methods to synthetic glycopeptide mimetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号