首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
Experiments were carried out to test the hypothesis that a 19-year-old proband with a mild variant of Ehlers-Danlos syndrome type IV had a mutation in the gene for type III procollagen. cDNA and genomic DNA were analyzed by using the polymerase chain reaction and cloning of the products into M13 filamentous phage. A mutation was found that converted the codon for glycine 883 of the triple-helical domain in one allele for type III procollagen to a codon for aspartate. The polymerase chain reaction introduced a few artifactual single base substitutions. Also, it was difficult to distinguish copies from the two alleles in many of the M13 clones. Therefore, several different strategies and analyses of about 50,000 nucleotide sequences in a series of clones were used to demonstrate that the mutation in the codon for glycine 883 was the only mutation in coding sequences for the triple-helical domain of type III procollagen that could have contributed to the phenotype. The same mutation in the codon for glycine 883 in one allele for type III procollagen was found in the proband's 52-year-old father who also had a mild variant of Ehlers-Danlos syndrome type IV. The type III procollagen synthesized by the proband's fibroblasts was analyzed by polyacrylamide gel electrophoresis. Less type III procollagen was secreted by the proband's fibroblasts than by control fibroblasts. Also, the thermal stability of the type III procollagen synthesized by the proband's fibroblasts was lower than the thermal stability of normal type III procollagen as assayed by brief protease digestion. The results, therefore, demonstrated that the single base mutation that converted the codon of glycine 883 to a codon for aspartate destabilized the entire triple helix of type III procollagen and probably accounted for the mild phenotype of Ehlers-Danlos syndrome type IV seen in the proband and her father.  相似文献   

2.
A proband with a lethal variant of osteogenesis imperfecta (OI) has been shown to have, in one allele in a gene for type I procollagen (COL1A1), a single base mutation that converted the codon for alpha 1-glycine 904 to a codon for cysteine. The mutation caused the synthesis of type I procollagen that was posttranslationally overmodified, secreted at a decreased rate, and had a decreased thermal stability. The results here demonstrate that the proband's mother had the same single base mutation as the proband. The mother had no fractures and no signs of OI except for short stature, slightly blue sclerae, and mild frontal bossing. As a child, however, she had the triangular facies frequently seen in many patients with OI. On repeated subculturing, the proband's fibroblasts grew more slowly than the mother's, but they continued to synthesize large amounts of the mutated procollagen in passages 7-14. In contrast, the mother's fibroblasts synthesized decreasing amounts of the mutated procollagen after passage 11. Also, the relative amount of the mutated allele in the mother's fibroblasts decreased with passage number. In addition, the ratio of the mutated allele to the normal allele in leukocyte DNA from the mother was half the value in fibroblast DNA from the proband. The simplest interpretation of the data is that the mother was mildly affected because she was a mosaic for the mutation that produced a lethal phenotype in one of her three children.  相似文献   

3.
Previous observations (Stolle, C.A., Pyeritz, R.E., Myers, J.C., and Prockop, D.J. (1985) J. Biol. Chem. 260, 1937-1944) indicated that fibroblasts from a proband with dominantly inherited Ehlers-Danlos syndrome type IV synthesized type III procollagen with a structural defect near the collagenase cleavage site at amino acid 781 and near the trypsin-sensitive site at 789. The type III procollagen was unusually sensitive to proteinases and cleaved by trypsin into a three-quarter fragment at 0 degrees C. Here we demonstrate that the mutation in the type III procollagen gene is a single base mutation that converts the codon for glycine at amino acid 790 of the alpha 1(III) chain to a codon for serine. The mutation probably makes the procollagen molecule unusually sensitive to proteases because it causes local unfolding of the triple helix and exposes the adjacent arginine residue. The results provide the first indication that not all glycine substitutions in the triple helices of fibrillar collagens are equivalent in terms of their effects of the biological function of the molecule.  相似文献   

4.
Synthesis of type I procollagen was examined in fibroblasts from a proband with a lethal perinatal variant of osteogenesis imperfecta. After trypsin digestion of the type I procollagen, a portion of the alpha 1 (I) chains was recovered as disulfide-linked dimers. Digestion of the protein with vertebrate collagenase and mapping of cyanogen bromide peptides suggested that a new cysteine residue was present between residues 551 and 775 of the alpha 1 (I) chain. Sequencing of cloned cDNAs prepared using mRNA from the proband's fibroblasts demonstrated that some of the clones contained a single base mutation that converted the glycine codon in amino acid position 748 of the alpha 1 (I) chain to a cysteine codon. About 80% of the type I procollagen synthesized by the proband's fibroblasts had a decreased thermal stability. The results, therefore, were consistent with the conclusion that normal pro-alpha 1 (I) chains and pro-alpha 1 (I) chains containing a cysteine residue in the alpha chain domain were synthesized in about equal amounts and incorporated randomly into type I procollagen. However, only about 10% of the alpha 1 (I) chains generated by trypsin digestion were disulfide-linked. Further studies demonstrated a decreased rate of secretion of type I procollagen containing the new cysteine residue and decreased processing of the protein by procollagen N-proteinase in cultures of postconfluent fibroblasts. Both parents were phenotypically normal and their fibroblasts synthesized only normal type I procollagen. Therefore, the mutation in the proband was a sporadic one and is very likely to have caused the connective tissue fragility that produced the lethal phenotype.  相似文献   

5.
Recent reports have demonstrated that a series of probands with severe osteogenesis imperfecta had single base mutations in one of the two structural genes for type I procollagen that substituted amino acids with bulkier side chains for glycine residues and decreased the melting temperature of the triple helix. Here we demonstrate that the type I procollagen synthesized by cultured fibroblasts from a proband with a severe form of osteogenesis imperfecta consisted of normal molecules and molecules over-modified by post-translational reactions. The thermal stability of the intact type I collagen was normal as assayed by protease digestion under conditions in which a decrease in thermal stability was previously observed with eight other substitutions for glycine in the alpha 1(I) chain. In contrast, the thermal stability of the one-quarter length B fragment generated by digestion with vertebrate collagenase was decreased by 2-3 degrees C under the same conditions. Nucleotide sequencing of cDNAs and genomic DNA established that the proband had a substitution of A for G in one allele of the pro alpha 1(I) gene that converted the codon for alpha 1-glycine 844 to a codon for serine. The results also established that the alpha 1-serine 844 was the only mutation that could account for the decrease in thermal stability of the collagenase B fragment. There are at least two possible explanations for the failure of the alpha 1-serine 844 substitution to decrease the thermal stability of the collagen molecule whereas eight similar mutations decreased the melting temperature. One possibility is that the effects of glycine substitutions are position specific because not all glycine residues make equivalent contributions to cooperative blocks of the triple helix that unfold in the predenaturation range of temperatures. A second possible explanation is that substitutions of glycine by serine have much less effect on the stability of protein than the substitutions by arginine, cysteine, and aspartate previously studied.  相似文献   

6.
Cultured skin fibroblasts from a proband with a lethal form of osteogenesis imperfecta produce two forms of type I collagen chains, with normal and delayed electrophoretic migration; collagen of the proband's mother was normal. Peptide mapping experiments localized the structural defect in the proband to alpha1(I) CB8 peptide in which residues 123 to 402 are spaned. Direct sequencing of amplified cDNA covering this region revealed a G to A single base change in one allele of the alpha1(I) chain, that converted glycine 388 to arginine. Restriction enzyme digestion of the RT-PCR product was consistent with a heterozygous COL1A1 mutation. The novel mutation conforms to the linear gradient of clinical severity for the alpha1(I) chain and results in reduced thermal stability by 3 degrees C and intracellular retention of abnormal molecules.  相似文献   

7.
Skin fibroblasts from a proband with a lethal variant of osteogenesis imperfecta synthesized both apparently normal type I procollagen and a type I procollagen that had slow electrophoretic mobility because of posttranslational overmodifications. The thermal unfolding of the collagen molecules as assayed by protease digestion was about 2 degrees C lower than normal. It is surprising, however, that collagenase A and B fragments showed an essentially normal melting profile. Assay of cDNA heteroduplexes with a new technique involving carbodiimide modification indicated a mutation at about the codon for amino acid 550 of the alpha 1(I) chain. Subsequent amplification of the cDNA by the PCR and nucleotide sequencing revealed a single-base mutation that substituted an aspartate codon for glycine at position alpha 1-541 in the COL1A1 gene. The results here confirm previous indications that the effects of glycine substitutions in type I procollagen are highly position specific. They also demonstrate that a recently described technique for detecting single-base differences by carbodiimide modification of DNA heteroduplexes can be effectively employed to locate mutations in large genes.  相似文献   

8.
Previous observations with type I collagen from a proband with lethal osteogenesis imperfecta demonstrated that type I collagen containing a substitution of cysteine for glycine alpha 1-748 copolymerized with normal type I collagen (Kadler, K. E., Torre-Blanco, A., Adachi, E., Vogel, B. E., Hojima, Y., and Prockop, D. J. (1991) Biochemistry 30, 5081-5088). Here, three preparations containing normal type I procollagen and type I procollagen with a substitution of cysteine for glycine alpha 1-175, glycine alpha 1-691, or glycine alpha 1-988 were purified from cultured skin fibroblasts from probands with osteogenesis imperfecta. The procollagens were then used as substrates in a system for assaying the self-assembly of type I collagen into fibrils. The cysteine-substituted collagens in all three preparations were incorporated into fibrils. The cysteine alpha 1-175 and cysteine alpha 1-691 collagens were shown to increase the lag time and decrease the propagation rate constant for fibril assembly. All three preparations containing cysteine-substituted collagens formed fibrils with diameters that were two to four times the diameter of fibrils formed under the same conditions by normal type I collagen. Also, the three preparations containing cysteine substituted collagens had higher solubilities than normal type I collagen. The results, therefore, demonstrated that the three cysteine-substituted collagens copolymerized with normal type I collagen. The effects of the mutated collagens on fibril assembly can be understood in terms of a recently proposed model of fibril growth from symmetrical tips by assuming that the mutated monomers partially inhibit tip growth but not lateral growth of the fibrils. Of special interest was the observation that the Cys alpha 1-175 collagen from a proband with a non-lethal variant of osteogenesis imperfecta had quantitatively less effect on several parameters of fibril assembly at 37 degrees C than cysteine-substituted collagens from three probands with lethal variants of the disease.  相似文献   

9.
Type I procollagen was examined in cultured skin fibroblasts from a patient with a lethal variant of osteogenesis imperfecta. About half of the pro-alpha chains were post-translationally overmodified and had a decreased thermal stability. The vertebrate collagenase A fragment had a normal thermal stability, but the B fragment had a decreased thermal stability. Therefore, there was a change in primary structure in amino acids 776-1014 of either the alpha 1(I) or alpha 2(I) chain. Three of five cDNA clones for the alpha 2(I) chain contained a single-base substitution of an A for a G that converted the codon for glycine at amino acid position 907 to aspartate. Complete nucleotide sequencing of bases coding for amino acids 776 to 1014 of the alpha 2(I) chain was carried out in one cDNA clone that contained the mutation in the glycine codon and in one that did not. Also, nucleotide sequencing was performed of bases coding for amino acids 776-1014 of the alpha 1(I) chain in seven independent cDNA clones. No other mutations were found. Therefore, the single base substitution that converts glycine 907 in the alpha 2(I) chain to aspartate is solely responsible for the decreased thermal stability of the type I procollagen synthesized by the proband's fibroblasts. Also, glycine 907 of the alpha 2(I) chain is an important component of a cooperative block that determines the melting temperature of the whole molecule.  相似文献   

10.
Fibroblasts from a man with a mild form of osteogenesis imperfecta (OI) and from his son with perinatal lethal OI (OI type II) produced normal and abnormal type I procollagen molecules. The abnormal molecules synthesized by both cell strains contained one or two pro alpha 1(I) chains in which the glycine at position 550 of the triple-helical domain was substituted by arginine as the result of a G-to-A transition in the first base of the glycine codon. Cells from the mother produced only normal type I procollagen molecules. By allele-specific oligonucleotide hybridization to amplified genomic sequences from paternal tissues we determined that the mutant allele accounted for approximately 50% of the COL1A1 alleles in fibroblasts, 27% of those in blood, and 37% of those in sperm. These findings demonstrate that the father is mosaic for the potentially lethal mutation and suggest that the OI phenotype is determined by the nature of the mutation and the relative abundance of the normal and mutant alleles in different tissues. Furthermore, the findings make it clear that some individuals with mild to moderate forms of OI are mosaic for mutations that will be lethal in their offspring.  相似文献   

11.
Inheritance of a single base mutation in the type III procollagen gene (COL3A1) was studied in a family with aortic aneurysms and easy bruisability. The mutation was a substitution of A for G+ 1 of intron 20 of the gene and caused aberrant splicing of RNA transcribed from the mutated allele. The phenotype in the family included aortic aneurysms that ruptured and produced death. It also included easy bruisability, but it did not include other characteristic features of Ehlers-Danlos syndrome type IV, such as ecchymoses, abnormal scarring, or prominent subcutaneous blood vessels. The data from the family, together with a review of other probands with mutations in the type III procollagen gene, indicated that there is phenotypic overlap between Ehlers-Danlos syndrome type IV and familial arterial aneurysms not associated with any overlap between Ehlers-Danlos syndrome type IV and familial arterial aneurysms not associated with any of the striking changes in skin originally cited as a characteristic feature of Ehlers-Danlos syndrome type IV. In addition, the results suggested that DNA tests for mutations in the type III procollagen gene may be useful to identify individuals predisposed to developing arterial aneurysms.  相似文献   

12.
Fibroblasts from a proband with Ehlers-Danlos syndrome type VII synthesized approximately equal amounts of normal and shortened pro alpha 2(I) chains of type I procollagen. Nuclease S1 probe protection experiments with mRNA demonstrated that the pro alpha 2(I) chains were shortened because of a deletion of most or all of the 54 nucleotides in exon 6, the exon that contains codons for the cleavage site for procollagen N-proteinase. Sequencing of genomic clones revealed a single-base mutation that converted the first nucleotide of intron 6 from G to A. Therefore, the mutation was a change, in the -GT-consensus splice site, that produced efficient exon skipping. Allele-specific oligonucleotide hybridizations demonstrated that the proband's mother, father, and brother did not have the mutation. Therefore, the mutation was a sporadic one. Analysis of potential 5' splice sites in the 5' end of intron 6 indicated that none had favorable values by the two commonly employed techniques for evaluating such sites. The proband is the fourth reported proband with Ehlers-Danlos syndrome VII with a single-base mutation that causes skipping of exon 6 in the splicing of RNA from either the COL1A1 gene or COL1A2 gene. No other mutations in the two type I procollagen genes have been found in the syndrome. Therefore, such mutations may be a common cause of the phenotype. The primers developed should be useful in screening for the same or similar mutations causing the disease.  相似文献   

13.
Two overlapping cDNA clones that cover the complete length of the mRNA for human type III procollagen were characterized. The data provided about 2500 base pairs of sequence not previously defined for human type III procollagen. Two tripeptide sequences of -Gly-Xaa-Yaa- were identified that were not detected previously by amino acid sequencing of human type III collagen. The two additional tripeptide units, together with three previously detected, establish that the alpha 1 (III) chain is 15 amino acids longer than either the alpha 1 (I) or alpha 2 (I) chains of type I collagen. The additional tripeptide units made hydropathy plots of the N-terminal and C-terminal regions of type III collagen distinctly different from those of type I collagen. The data also demonstrated that human type III procollagen has the same third base preference in codons for glycine, proline and alanine that was previously found with human and chick type I procollagen. In addition, comparison of two cDNA clones from the same individual revealed a variation in structure in that the codon for amino acid 880 of the alpha 1 (III) chain was -CTT- for leucine in one clone and -TTT- for phenylalanine in the other.  相似文献   

14.
In previous work (Vogel, B. E., Minor, R. R., Freund, M., and Prockop, D. J. (1987) J. Biol. Chem. 262, 14737-14744), we identified a single-base mutation that converted the glycine at position 748 of the alpha 1 chain of type I procollagen to a cysteine in a proband with a lethal variant of osteogenesis imperfecta. In addition to posttranslational overmodification, the abnormal molecules displayed decreased thermal stability and a decreased rate of secretion. An unexplained finding was that procollagen was poorly processed to pCcollagen in postconfluent cultures of skin fibroblasts. Here, we show that the procollagen synthesized by the proband's cells is resistant to cleavage by procollagen N-proteinase, a conformation-sensitive enzyme. Since the only detectable defect in the molecule was the cysteine for glycine substitution, we assembled several space-filling models to try to explain how the structure of the N-proteinase cleavage site can be affected by an amino acid substitution over 700 amino acid residues or 225 nm away. The models incorporated a phase shift of a tripeptide unit in one or both of the alpha 1 chains. The most satisfactory models produced a flexible kink of 30 degrees or 60 degrees at the site of the cysteine substitution. Therefore, we examined the procollagen by electron microscopy. About 25% of the molecules had a kink not seen in control samples, and the kink was at the site of the cysteine substitution.  相似文献   

15.
A search for mutations in the gene for type II procollagen (COL2A1) was carried out in affected members of a family with early-onset cataracts, lattice degeneration of the retina, and retinal detachment. They had no symptoms suggestive of involvement of nonocular tissues, as is typically found in the Stickler syndrome. The COL2A1 gene was amplified with PCR, and the products were analyzed by denaturing gradient gel electrophoresis. The results suggested a mutation in one allele for exon 10. Sequencing of the fragment demonstrated a single-base mutation that converted the codon for glycine at position alpha 1-67 to aspartate. The mutation was found in three affected members of the family available for study but not in unaffected members or 100 unrelated individuals. Comparison with previously reported mutations suggested that mutations introducing premature termination codons in the COL2A1 gene are a frequent cause of the Stickler syndrome, but mutations in the COL2A1 gene that replace glycine codons with codons for bulkier amino acid can produce a broad spectrum of disorders that range from lethal chondrodysplasias to a syndrome involving only ocular tissues, similar to the syndrome in the family originally described by Wagner in 1938.  相似文献   

16.
A baby with the lethal perinatal form of osteogenesis imperfecta was shown to have a structural defect in the alpha 1(I) chain of type I procollagen. Normal and mutant alpha 1(I) CB8 cyanogen bromide peptides, from the helical part of the alpha 1(I) chains, were purified from bone. Amino acid sequencing of tryptic peptides derived from the mutant alpha 1(I) CB8 peptide showed that the glycine residue at position 391 of the alpha 1(I) chain had been replaced by an arginine residue. This substitution accounted for the more basic charged form of this peptide that was observed on two-dimensional electrophoresis of the collagen peptides obtained from the tissues. The substitution was associated with increased enzymatic hydroxylation of lysine residues in the alpha 1(I) CB8 and the adjoining CB3 peptides but not in the carboxyl-terminal CB6 and CB7 peptides. This finding suggested that the sequence abnormality had interfered with the propagation of the triple helix across the mutant region. The abnormal collagen was not incorporated into the more insoluble fraction of bone collagen. The baby appeared to be heterozygous for the sequence abnormality and as the parents did not show any evidence of the defect it is likely that the baby had a new mutation of one allele of the pro-alpha 1(I) gene. The amino acid substitution could result from a single nucleotide mutation in the codon GGC (glycine) to produce the codon CGC (arginine).  相似文献   

17.
Type I procollagen was purified from cultured fibroblasts of a proband with a lethal variant of osteogenesis imperfecta. The protein was a mixture of normal procollagen and mutated procollagens containing a substitution of cysteine for glycine in either one pro alpha 1(I) chain or both pro alpha 1(I) chains, some or all of which were disulfide-linked through the cysteine at position alpha 1-748. The procollagen was then examined in a system for generating collagen fibrils de novo by cleavage of the pCcollagen to collagen with procollagen C-proteinase [Kadler et al. (1987) J. Biol. Chem. 262, 15696-15701]. The mutated collagens and normal collagens were found to form copolymers under a variety of experimental conditions. With two preparations of the protein that had a high content of alpha 1(I) chains disulfide-linked through the cysteine alpha 1-748, all the large structures formed had a distinctive, highly branched morphology that met one of the formal criteria for a fractal. Preparations with a lower content of disulfide-linked alpha 1(I) chains formed fibrils that were 4 times the diameter of control fibrils. The formation of copolymers was also demonstrated by the observation that the presence of mutated collagens decreased the rate of incorporation of normal collagen into fibrils. In addition, the solution-phase concentration at equilibrium of mixtures of mutated and normal collagens was 5-10-fold greater than that of normal collagen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Previous biochemical studies on cartilage tissue from a proband with Type II achondrogenesis-hypochondrogenesis (Godfrey, M., and Hollister, D. W. (1988) Am. J. Hum. Genet. 43, 904-913) indicated heterozygosity for a structural abnormality in the triple helical domain of pro-alpha 1 (II) collagen. Here we demonstrate that the mutation in the type II procollagen gene is a single base change that converts the codon for glycine (GGC) at amino acid 943 of the alpha 1 (II) chain to a codon for serine (AGC). The substitution disrupts the invariant Gly-X-Y structural motif necessary for perfect triple helix formation and leads to extensive overmodification, intracellular retention, and reduced secretion of type II collagen. These findings confirm the proposal that new dominant mutations in the type II procollagen gene may account for some cases of Type II achondrogenesis-hypochondrogenesis. Since recent studies (Lee, B., Vissing, H., Ramirez, F., Rogers, D., and Rimoin, D. (1989) Science 244, 978-980) have identified a dominantly inherited type II procollagen gene deletion in a non-lethal form of skeletal dysplasia, namely spondyloepiphyseal dysplasia, the data more generally demonstrate that different type II procollagen gene mutations eventuate in a wide and diverse spectrum of clinical phenotypes.  相似文献   

19.
Cultured dermal fibroblasts from an infant with the lethal perinatal form of osteogenesis imperfecta (type II) synthesize normal and abnormal forms of type I procollagen. The abnormal type I procollagen molecules are excessively modified during their intracellular stay, have a lower than normal melting transition temperature, are secreted at a reduced rate, and form abnormally thin collagen fibrils in the extracellular matrix in vitro. Overmodification of the abnormal type I procollagen molecules was limited to the NH2-terminal three-fourths of the triple helical domain. Two-dimensional mapping of modified and unmodified alpha chains of type I collagen demonstrated neither charge alterations nor large insertions or deletions in the region of alpha 1(I) and alpha 2(I) in which overmodification begins. Both the structure and function of type I procollagen synthesized by cells from the parents of this infant were normal. The simplest interpretation of the results of this study is that the osteogenesis imperfecta phenotype arose from a new dominant mutation in one of the genes encoding the chains of type I procollagen. Given the requirement for glycine in every third position of the triple helical domain, the mutation may represent a single amino acid substitution for a glycine residue. These findings demonstrate further heterogeneity in the biochemical basis of osteogenesis imperfecta type II and suggest that the nature and location of mutations in type I procollagen may determine phenotypic variation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号