首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Gubb D  Roote J  McGill S  Shelton M  Ashburner M 《Genetics》1986,112(3):551-575
TE146, a large transposing element of Drosophila melanogaster, carries two copies of the white and roughest genes in tandem. In consequence, z1 w 11E4; TE146(Z)/+ flies have a zeste (lemon-yellow) eye color. However, one in 103 TE146 chromosomes mutates to a red-eyed form. The majority of these "spontaneous red" (SR) derivatives of TE146 have only one copy of the white gene and are, cytologically, two- to three-banded elements, rather than six-banded as their progenitor. The SR forms of TE146 are also unstable and give zeste-colored forms with a frequency of about one in 104. One such "spontaneous zeste" (SZ) derivative carries duplicated white genes as an inverted, rather than a tandem, repeat. The genetic instability of this inverted repeat form of TE146 is different from that of the original tandem repeat form. In particular, the inverted repeat form frequently produces derivatives with internal rearrangements of the TE and gives a much lower frequency of SR forms. In addition, two novel features of the interaction between w+ alleles in a zeste background have been found. First, copies of w + can become insensitive to suppression by zeste even when paired. Second, an inversion breakpoint may disrupt the pairing between two adjacent w+ alleles, necessary for their suppression by zeste, without physically separating them.  相似文献   

3.
4.
Summary From a zeste mutant stock with a mutable white locus a new mutant (z w w ) was isolated. It has a white-eyed phenotype and a short X-chromosome inversion (In(1)w w ) which extends from salivary chromosome bands 3B2-C1 to 4B4-C1. In giant chromosomes of heterozygotes the inversion is unusually tightly paired. Probably because of this intimate pairing the recombination frequencies for regions near the inversion are not decreased in comparison to those for structurally normal chromosomes. The inversion chromosome is mutable. The mutations which arise have pigmented eyes and can be subdivided into two groups. One group is characterized by a re-inversion to normal chromosome structure. The mutability of the white locus appears to be independent of the inversion and reinversion. The process of reinversion is discussed.  相似文献   

5.
Summary Seven independent transpositions of the w + gene have been recovered as derivatives of two separate direct tandem duplications of the white locus. The transpositions map to discrete sites on both major autosomes. Five transpositions were employed to study the role of w + gene dos-age on zeste (z) gene expression. Each transposition generates a unique zeste phenotype; one transposition is not predictive for another. A functional allele of zeste, z 77h, responds to w + gene dosage contrary to the z response.Supported by NIH grant GM22221  相似文献   

6.
We have identified molecular lesions associated with six mutations, wIR2 and wIR4-8, of the white gene of Drosophila melanogaster. These mutations arose in flies subject to I-R hybrid dysgenesis. Four of the mutations give rise to coloured eyes and are associated with insertions of 5.4-kb elements indistinguishable from the I factor controlling I-R dysgenesis. The insertion associated with wIR4 is at a site which, within the resolution of these experiments, is identical to that of two previously studied I factors. This appears to be a hot-spot for I factor insertion. We have compared the sites of these insertions with sequences complementary to white gene mRNA identified by Pirrotta and Bröckl. The hot-spot is in the fourth intron. The insertion carried by wIR5 is either within, or just beyond, the last exon. The insertion carried by wIR6 is near the junction of the first exon and first intron. The wIR2 mutation is a derivative of w1. It contains an insertion of I factor DNA within, or immediately adjacent to, the F-like element associated with w1, and results in restoration of some eye colour. This insertion is just upstream of the start of the white mRNA. Mutations wIR7 and wIR8 are deletions removing mRNA coding sequences. Both determine a bleached white phenotype.  相似文献   

7.
The pattern of late labeling spots in the X chromosome ofDrosophila melanogaster has been studied by H3-thymidine autoradiography. The pattern has been found to be identical with that of the “weak spots”, or places of “ectopic pairing”. The late replicating spot in region 3C has been found to lie close to the right of the locus ofwhite. A triplication and a deficiency involving the right half of thewhite region and exhibiting changes in their interaction with the mutantzeste have been found to be associated with changes in the frequency and intensity of labeling of the late material in 3 C. Twoz + revertants derived from the triplication by X irradiation again show concomitant changes in labeling behavior at 3C.  相似文献   

8.
Summary We have re-examined the effect of the mutation za in the zeste locus on the phenotype of the bx 34e /Ubx trans combination of bithorax mutations, in the presence and absence of rearrangements which presumably affect homologous pairing in the bithorax region. Our observations suggest the possibility of the zeste +gene product being needed for transvection at the bithorax locus  相似文献   

9.
A ring-Y chromosome, R(Y)w m, of D. hydei is described which carries a complete set of fertility genes, a NOR region and a small X-chromosomal insertion (w m), which may be used as a marker. The ring has been characterized by various staining techniques. It was derived from a w mCo Y chromosome by X-ray treatment of spermatocytes. Its mode of origin allows to fix the gene order in the distal region of the long arm of the w mCoY chromosome. The white + gene included in the ring shows a new type of position-effect variegation which is described and discussed in the context of an earlier hypothesis on a dual function of the white locus.  相似文献   

10.
11.
Monod C  Aulner N  Cuvier O  Käs E 《EMBO reports》2002,3(8):747-752
white-mottled (wm4) position-effect variegation (PEV) arises by translocation of the white gene near the pericentric AT-rich 1.688 g/cm3 satellite III (SATIII) repeats of the X chromosome of Drosophila. The natural and artificial A•T-hook proteins D1 and MATH20 modify wm4 PEV in opposite ways. D1 binds SATIII repeats and enhances PEV, presumably via a recruitment of protein partners, whereas MATH20 suppresses it. We show that D1 and MATH20 compete for binding to identical sites of SATIII repeats in vitro and that conditional MATH20 expression results in a displacement of D1 from pericentric heterochromatin in vivo. In the presence of intermediate levels of MATH20, we show that this displacement becomes selective for SATIII repeats. These results strongly suggest that the suppression of wm4 PEV by MATH20 is due to a displacement of D1 from its preferred binding sites and provide additional support for a direct role of D1 in the assembly of AT-rich heterochromatin.  相似文献   

12.
Conte C  Calco V  Desset S  Leblanc P  Dastugue B  Vaury C 《Genetica》2000,109(1-2):53-59
Transposable elements represent a large fraction of eukaryotic genomes and they are thought to play an important role in chromatin structure. ZAMand Idefixare two LTR-retrotransposons from Drosophila melanogastervery similar in structure to vertebrate retroviruses. In all the strains where their distribution has been studied, ZAMappears to be present exclusively in the intercalary heterochromatin while Idefixcopies are mainly found in the centromeric heterochromatin with very few copies in euchromatin. Their distribution varies in a specific strain called RevI in which the mobilization of ZAMand Idefixis highly induced. In this strain, 15 copies of ZAMand 30 copies of Idefixare found on the chromosomal arms in addition to their usual distribution. Amongst the loci where new copies are detected, a hotspot for their insertion has been detected at the whitelocus where up to four elements occurred within a 3-kb fragment at the 5′ end of this gene. This property of ZAMand Idefixto accumulate at a defined site provides an interesting paradigm to bring insight into the effect exerted by multiple insertions of transposable elements at an euchromatic locus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
14.
15.
The phenotypic effects of different doses of the dominant, sex-linked mutant Notch (N) and its wildtype allele (N +) were studied in Drosophila hydei, N being lethal in homozygous or hemizygous condition. Various dosage combinations were made by using N + N and N + N + attached-X chromosomes as well as X and Y N +-duplication chromosomes (w mCoY, XwmCo,and DpCo Nt). The N mutant used, N 68, is associated with a small inversion: In (I) N 68.The wing phenotype was found to depend solely on the number of functional (N +) alleles present, irrespective of the dose of N. Females with a single dose of N + are phenotypically Notch, females with three or four doses of N + show a Confluens wing phenotype. The latter occurs in varying degrees of expression which seem to be correlated with the relative amounts of sex-chromosomal heterochromatin present. In males the N + locus behaves as a dosage compensated locus either on the X or the Y chromosome.In the w mCo (w+N+) duplication, the w + locus shows variegation when placed over white, whereas N + placed over N 68 does not. The former being situated closer to the heterochromatin in this aberration, this is consistent with the idea of gene inhibition by heterochromatin but at the same time would imply a very limited spreading effect.  相似文献   

16.
17.
We report the molecular cloning of a chromosome segment including the white locus of Drosophila melanogaster. This region was isolated using a deficiency extending from the previously cloned heat-shock puff sequences at 87A7 to a large transposable element containing the loci white and roughest.FB-NOF, a 7.5 kb element with partial homology to a family of inverted repeat sequences (Potter et al., 1980), is found very near the deficiency breakpoint, and is followed by DNA originating from the white locus region. Sequences totalling ˜60 kb surrounding this initial entry point were obtained by the cloning of successively overlapping fragments from a wild-type strain. Several rearrangement breakpoints have been mapped relative to the cloned DNA; these define the limits of the white locus and further differentiate the “white proximal region”, thought to function in gene regulation, from the remainder of the locus. Insertion of the dispersed repetitive element copia into the white locus is observed in strains carrying the white-apricot allele. Analysis of several white-apricot revertants suggests that copia insertion is responsible for the apricot eye color phenotype.  相似文献   

18.
A large transposable element (TE) comprising the white-apricot and roughest genes has been found to transpose to well over a hundred sites scattered over the Drosophila genome. We report the cloning of the essential parts of several TEs. TE98 and TE28 sequences were cloned by `walking' along the chromosome from the previously cloned heatshock genes. The ends of the TEs are characterized by dispersed repetitive elements belonging to the foldback (FB) family. FB elements are also associated with two independently isolated transposable elements originating from the white locus, Tp wc-1 and Tp w+IV. The strong correlation between FB elements and large composite transposons suggests that a pair of these elements can mobilize large intermediary DNA segments. One particular FB family member, FB-NOF, is associated with TE28, the white-crimson (wc) mutant, the wc-derived Tp wc-1 and probably also with Tp w+IV. A unique sequence located close to the white end of TE28 was used to clone the borders of TE77 and the surrounding sequences in the bithorax region, indicating that the TE can be used as a probe for gene isolation. Some evolutionary implications of the large composite transposons are discussed.  相似文献   

19.
Foldback (FB) elements are transposable elements found in many eukaryotic genomes; they are thought to contribute significantly to genome plasticity. In Drosophila melanogaster, FBs have been shown to be involved in the transposition of large chromosomal regions and in the genetic instability of some alleles of the white gene. In this report we show that FB mediated transposition of w 67C23, a mutation that deletes the promoter of the white gene and its first exon, containing the start codon, can restore expression of the white gene. We have characterized three independent events in which a 14-kb fragment from the w 67C23 locus was transposed into an intron region in three different genes. In each case a local promoter drives the expression of white, producing a chimeric mRNA. These findings suggest that, on an evolutionary timescale, FB elements may contribute to the creation of new genes via exon shuffling.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. P. Georgiev  相似文献   

20.
Summary We have studied the influence of various factors on the V-type position effect of the white gene transposed to heterochromatin as a result of different chromosome rearraugements in D. melanogaster. Variegation due to the white gene position effect is much weaker if the flies have received Dp(1;3)wvco from parental males, and not females. The origin of the chromosome rearrangement does not have this influence in the case of T(1;4)wm5 or has it to insignificant extent in the case of In(1)wm4. The Y-chromosome in maternal genome strongly suppresses Dp(1;3)wvco-induced variegation even in the progeny which has not received an extra Y-chromosome but only if this progeny gets Dp(1;3)wvco from the same female. The low temperature (16° C) at which parental females have developed, considerably affects the position effect in the progeny with Dp(1;3)wvco, whereas the temperature of males' development has no influence at all. The maternal temperature effect occurs also when Dp(1;3)wvco has come down from the father, though it is stronger if the mother subjected to low temperature treatment bore the rearrangement. The influence of temperature seems to take effect at the final stages of oogenesis.The data obtained lead one to suppose that the influence of genotypic and external factors on variegation is passed to the next generation of flies in different ways. The direction of crosses and additional Y-chromosome heterochromatin in the maternal genome seem to affect variegation in the progeny through changes in the properties (structure) of the chromosome rearrangement expressing the position effect. As to the temperature of the mothers development, only a small part of its influence may be accounted for by the same mechanism, whereas most of the temperature influence seems to be passed on through other components of the nucleus or through the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号