首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of Solanum nigrum mutants resistant to the antibiotics spectinomycin, streptomycin and lincomycin have been isolated from regenerating leaf strips after mutagenesis with nitroso-methylurea. Selection of streptomycin- and spectinomycin-resistant mutants has been described earlier. Lincomycin-resistant mutants show resistance to higher levels of the antibiotic than used in the initial selection, and in the most resistant mutant (Ll7A1) maternal inheritance of the trait was demonstrated. The lincomycin-resistant mutant L17A1 and a streptomycin plus spectinomycin resistant double mutant (StSpl) were chosen for detailed molecular characterisation. Regions of the plastid DNA, within the genes encoding 16S and 23S rRNA and rps12 (3) were sequenced. For spectinomycin and lincomycin resistance, base changes identical to those in similar Nicotiana mutants were identified. Streptomycin resistance is associated with an A C change at codon 87 of rps 12 (converting a lysine into a glutamine), three codons upstream from a mutation earlier reported for Nicotiana. This site has not previously been implicated in streptomycin resistance mutations of higher plants, but has been found in Escherichia coli. The value of these mutants for studies on plastid genetics is discussed.  相似文献   

2.
Summary Resistance to streptomycin and lincomycin in plant cell culture is used as a color marker: resistant cells are green whereas sensitive cells are white on the selective medium. Streptomycin and lincomycin at appropriate concentrations do not kill sensitive Nicotiana cells. The selective value of plastid ribosomal DNA mutations, conferring resistance to streptomycin and lincomycin, was investigated by growing heteroplastidic cells on a selective medium. The heteroplastidic cells were obtained by protoplast fusion, and contained a mixed population of streptomycin resistant plastids from the N. tabacum line Nt-SR1-Kan2, and lincomycin resistant plastids from the N. plumbaginifolia line Np-LR400-Hyg1. Clones derived from protoplast fusion were selected by kanamycin and hygromycin resistance, transgenic nuclear markers. Somatic hybrids were then grown on a selective streptomycin or lincomycin medium, or in the absence of either drug to a 50 to 100 mg size callus. Southern analysis of a polymorphic region of plastid DNA (ptDNA) revealed that somatic hybrids grown on streptomycin contained almost exclusively ptDNA from the streptomycin resistant parent, somatic hybrids grown on lincomycin contained almost exclusively ptDNA from the lincomycin resistant parent whereas somatic hybrids grown in the absence of either drug contained mixed parental plastids. Sensitive ptDNA was below detection level in most clones on selective medium, but could be recovered upon subsequent culture in the presence of the appropriate drug. The drugs streptomycin and lincomycin provide a powerful selection pressure that should facilitate recovery of plastid transformants.  相似文献   

3.
Tomato plastid transformants were obtained using two vectors containing cloned plastid DNA of either Nicotiana tabacum or Solanum nigrum and including point mutations conferring resistance to spectinomycin and streptomycin. Transformants were recovered after PEG-mediated direct DNA uptake into protoplasts, followed by selection on spectinomycin-containing medium. Sixteen lines contained the point mutation, as confirmed by mapping restriction enzyme sites. One line obtained with each vector was analysed in more detail, in comparison with a spontaneous spectinomycin-resistant mutant. Integration of the cloned Solanum or Nicotiana plastid DNA, by multiple recombination events, into the tomato plastome was confirmed by sequence analysis of the targeted region of plastid DNA in the inverted repeat region. Maternal inheritance of spectinomycin and streptomycin resistances or sensitivity in seedlings also confirmed the transplastomic status of the two transformants. The results demonstrate the efficacy in tomato of a selection strategy which avoids the integration of a dominant bacterial antibiotic resistance gene.  相似文献   

4.
Generation of fertile transplastomic soybean   总被引:26,自引:0,他引:26  
We describe here the development of a plastid transformation method for soybean, a leguminous plant of major agronomic interest. Chloroplasts from embryogenic tissue of Glycine max have been successfully transformed by bombardment. The transforming DNA carries a spectinomycin resistance gene (aadA) under the control of tobacco plastid regulatory expression elements, flanked by two adjacent soybean plastome sequences allowing its targeted insertion between the trnV gene and the rps12/7 operon. All generated spectinomycin resistant plants were transplastomic and no remaining wild type plastome copies were detected. No spontaneous mutants were obtained. The transformation efficiency is similar to that of tobacco plastids. All transplastomic T0 plants were fertile and T1 progeny was uniformly spectinomycin resistant, showing the stability of the plastid transgene. This is the first report on the generation of fertile transplastomic soybean.  相似文献   

5.
We report here the isolation of spectinomycin-resistant mutants in cultured cells of Medicago sativa line RegenSY-T2. Spectinomycin induces bleaching of cultured alfalfa cells due to inhibition of protein synthesis on the prokaryotic type 70S plastid ribosomes. Spontaneous mutants resistant to spectinomycin bleaching were identified by their ability to form green shoots on plant regeneration medium containing selective spectinomycin concentrations in the range of 25–50?mg/l. Sequencing of the plastid rrn16 gene revealed that spectinomycin resistance is due to mutations in a conserved stem structure of the 16S rRNA. Resistant plants transferred to the greenhouse developed normally and produced spectinomycin-resistant seed progeny. In light of their absence in soybean, a related leguminous plant, the isolation of spectinomycin-resistant mutants in M. sativa was unexpected. The new mutations are useful for the study of plastid inheritance, as demonstrated by detection of predominantly paternal plastid inheritance in the RegenSY-T2?×?Szapko57 cross, and can be used as selective markers in plastid transformation vectors to obtain cisgenic plants.  相似文献   

6.
Summary Ethyl methane sulphonate (EMS) is a potential mutagen to induce lincomycin resistance in Capsicum annuum. Mutagenized cotyledons were cultured on shoot regenerating medium containing lincomycin (100 mgl−1). Approximately 14% of regenerated shoots were chlorophyll deficient and about 4% of regenerated shoots were green from mutaganized cotyledons. The regenerated green plants were resistant to lincomycin but sensitive to chloramphenicol, kanamycin, spectinomycin, and streptomycin. Reciprocal crosses were made between resistant and sensitive plants. Inheritance of lincomycin resistance was transmitted as a non-Mendelian trait. Lincomycin resistance is a first selectable and maternally inherited organelle encoded genetic marker described in chili pepper. Such mutants should be useful in designing biochemical selection schemes to recover somatic hybrids and cybrids.  相似文献   

7.
Summary A streptomycin resistant Nicotiana plastome mutant, X/str R6, was subjected to molecular analysis. In this mutant, a single nucleotide transition, C » T, in the chloroplast gene for ribosomal protein S12 alters codon 90 from proline to serine while the nucleotide sequence of the chloroplast 16 S rRNA gene is identical to that of the wild type. Mutant X/str R6 thus differs from several previously reported streptomycin resistant chloroplast mutants which are altered in the gene for 16 S rRNA.  相似文献   

8.
Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.  相似文献   

9.
Plastid transformation in Arabidopsis thaliana   总被引:33,自引:0,他引:33  
Plastid transformation is reported in Arabidopsis thaliana following biolistic delivery of transforming DNA into leaf cells. Transforming plasmid pGS31A carries a spectinomycin resistance (aadA) gene flanked by plastid DNA sequences to target its insertion between trnV and the rps12/7 operon. Integration of aadA by two homologous recombination events via the flanking ptDNA sequences and selective amplification of the transplastomes on spectinomycin medium yielded resistant cell lines and regenerated plants in which the plastid genome copies have been uniformly altered. The efficiency of plastid transformation was low: 2 in 201 bombarded leaf samples. None of the 98 plants regenerated from the two lines were fertile. Received: 13 February 1998 / Revision received: 24 April 1998 / Accepted: 5 June 1998  相似文献   

10.
A system has been developed for rapid selection of streptomycin resistant mutants, as adventitious shoots arising from explants of several Solanaceous species. Efficient mutagenesis was achieved by incubating shoot culture-derived leaf strips with 1 or 5 mM nitroso-methylurea, for 90 or 120 min. In Nicotiana tabacum and Lycopersicon peruvianum these treatments resulted in white or variegated adventitious shoots from up to 3.5% of explants placed on medium promoting shoot regeneration. Chlorophyll deficiencies were only observed very rarely in Solanum nigrum. Streptomycin resistant shoots were obtained from leaf explants placed on medium containing 500 mg l-1 streptomycin sulphate, under which conditions explants are bleached and adventitious shoot development suppressed. Green adventitious s shoots appeared at a frequency dependent both on the mutagenic treatment and on the species. The best response was with S. nigrum where >70% of the explants produced streptomycin resistant shoots, most of which retained their resistance on subsequent testing. Maternal inheritance of streptomycin resistance has been confirmed for several N. tabacum and S. nigrum mutants, and there is also evidence for paternal transmission in the latter species. The procedure has been successfully extended to other species, including N. sylvestris and N. plumbaginifolia, and also to obtain spectinomycin resistant mutants.Communicated by R. Hagemann  相似文献   

11.
Mutant strains resistant to neomycin or to kanamycin sulfate were isolated from Escherichia coli K-12. Nine mutants were analyzed; all were resistant to both antibiotics (about 150 and 100 mug/ml, respectively), and were designated nek. In the mutant strains, the ribosomes are changed from those of the parental strain; for when they were used in assays for polypeptide formation directed by polyadenylic acid or polycytidylic acid, coding fidelity in presence of the drugs was increased and inhibition of synthesis by the drugs was lessened. Mating experiments and transduction tests showed that all of the nine nek mutants are either closely linked or allelic, and the nek locus is closely linked to two genes-str (streptomycin) and spc (spectinomycin)-known to affect the 30S ribosome. The two nek mutants tested were recessive to the sensitive, wild-type allele. When the nek mutants were compared to the parental strain, pleiotropic effects of the nek mutations were observed. Resistance to low levels of streptomycin and spectinomycin was increased, whereas resistance to chloramphenicol was decreased. Also, the mutants were less able to adapt to high concentrations of lincomycin, and could no longer show phenotypic suppression of an arginine requirement by neomycin or kanamycin. Such pleiotropic effects are suggested to be the rule for mutations in genes that participate in the biosynthesis of a cellular organelle.  相似文献   

12.
Summary Nicotiana tabacum lines carrying maternally inherited resistance to spectinomycin were obtained by selection for green callus in cultures bleached by spectinomycin. Two levels of resistance was found. SPC1 and SPC2 seedlings are resistant to high levels (500 g/ml), SPC23 seedlings are resistant to low levels (50 g/ml) of spectinomycin. Lines SPC2 and SPC23 are derivatives of the SR1 streptomycin-resistant plastome mutant. Spectinomycin resistance is due to mutations in the plastid 16S ribosomal RNA: SPC1, an A to C change at position 1138; SPC2, a C to U change at position 1139; SPC23, a G to A change at position 1333. Mutations similar to those in the SPC1 and SPC2 lines have been previously described, and disrupt a conserved 16S ribosomal RNA stem structure. The mutation in the SPC23 line is the first reported case of a mutation close to the region of the 16S rRNA involved in the formation of the initiation complex. The new mutants provide markers for selecting plastid transformants.  相似文献   

13.
Suppression of streptomycin dependence in Escherichia coli strain K-114, a spectinomycin-sensitive strain, is correlated with modification of 30S ribosomal protein P4, the component modified in spectinomycin-resistant mutants. The mutant is unusual in that reversion from dependence has previously been correlated only with modification in 30S protein P4a. Introduction into K-114 of another mutation conferring spectinomycin resistance results in a further alteration in protein P4.  相似文献   

14.
We investigated the size of flanking DNA incorporated into the tobacco plastid genome alongside a selectable antibiotic resistance mutation. The results showed that integration of a long uninterrupted region of homologous DNA, rather than of small fragments as previously thought, is the more likely event in plastid transformation of land plants. Transforming plasmid pJS75 contains a 6.2-kb DNA fragment from the inverted repeat region of the tobacco plastid genome. A spectinomycin resistance mutation is encoded in the gene of the 16S rRNA and, 3.2 kb away, a streptomycin resistance mutation is encoded in exon II of the ribosomal protein gene rps12. Transplastomic lines were obtained after introduction of pJS75 DNA into leaf cells by the biolistic process and selection for the spectinomycin resistance marker. Homologous replacement of resident wild-type sequences resulted in integration of all, or almost all, of the 6.2-kb plastid DNA sequence from pJS75. Plasmid pJS75, which contains engineered cloning sites between two selectable markers, can be used as a plastid insertion vector.  相似文献   

15.
Mutants, resistant to neamine and spectinomycin, have been isolated from S. typhimurium and S. dublin highly virulent strains. The neamine-resistant mutants can be divided into 3 classes in accordance with their sensitivity to streptomycin: sensitive, resistant to low and high concentrations of this antibiotic. The transduction analysis with the use of bacteriophage P 22 has revealed that the spectinomycin-resistant mutations under study are spc A mutations, while the mutations leading to resistance to neamine in class Near Strr 500 are nea B mutations. The mutation leading to resistance to spectinomycin (spc A) has been found to produce no changes in the virulence of salmonellae in the intraperitoneal infection of mice. The mutations leading to resistance to neamine and streptomycin (nea B and str A) have been found to decrease virulence.  相似文献   

16.
Six chloroplast gene mutants of Chlamydomonas reinhardtii resistant to spectinomycin, erythromycin, or streptomycin have been assessed for antibiotic resistance of their chloroplast ribosomes. Four of these mutations clearly confer high levels of antibiotic resistance on the chloroplast ribosomes both in vivo. Although one mutant resistant to streptomycin and one resistant to spectinomycin have chloroplast ribosomes as sensitive to antibiotics as those of wild type in vivo, these mutations can be shown to alter the wildtype sensitivity of chloroplast ribosomes in polynucleotide-directed amino acid incorporation in vitro. Genetic analysis of these six chloroplast mutants and three similar mutants (Sager, 1972), two of which have been shown to affect chloroplast ribosomes (Mets and Bogorad, 1972; Schlanger and Sager, 1974), indicates that in Chlamydomonas at least three chloroplast gene loci can affect streptomycin resistance of chloroplast ribosomes and that two can affect erythromycin resistance. The three spectinomycin-resistant mutants examined appear to be alleles at a single chloroplast gene locus, but may represent mutations at two different sites within the same gene. Unlike wild type, the streptomycin and spectinomycin resistant mutants which have chloroplast ribosomes sensitive to antibiotics in vivo, grow well in the presence of antibiotic by respiring exogenously supplied acetate as a carbon source, and have normal levels of cytochrome oxidase activity and cyanide-sensitive respiration. We conclude that mitochondrial protein synthesis in these mutants is resistant to these antibiotics, whereas in wild type it is sensitive. To explain the behavior of these two chloroplast gene mutants as well as other one-step mutants which are resistant both photosynthetically and when respiring acetate in the dark, we have postulated that a mutation in a single chloroplast gene may result in alteration of both chloroplast and mitochondrial ribosomes. Mitochondrial resistance would appear to be the minimal necessary condition for survival of all such mutants, and antibiotic-resistant chloroplast ribosomes would be necessary for survival only under photosynthetic conditions.  相似文献   

17.
Streptomycin-resistant mutants were isolated from mutagenised cotyledon explants of Capsicum praetermissum Heiser & Smith. The explants were mutagenised with N-ethyl-N-nitrosourea, which resulted in a high frequency of streptomycin-resistant mutants (18.0%) and a low frequency of chlorophyll-deficient (albino) mutants (8.0%). Complete streptomycin-resistant plantlets were obtained after rooting of the regenerated green shoots on rooting medium containing 1.0 mg L-1 IAA and 500 mg L-1 streptomycin sulphate. Leaf-segment assay of these plantlets revealed that they were resistant to streptomycin but sensitive to chloramphenicol, kanamycin, lincomycin, and spectinomycin. Reciprocal crosses between streptomycin-resistant and -sensitive plants showed a non-Mendelian transmission of resistance by female parents.  相似文献   

18.
An analysis was carried out of precursor ribonucleoprotein particles produced by cold sensitive (subunit assembly defective) mutants from Escherichia coli which are either resistant to spectinomycin alone or to both spectinomycin and streptomycin. It was found that while most spectinomycin-resistant mutants accumulated precursor particles sedimenting at 26-28S and around 30S, several streptomycin-spectinomycin double resistant mutants accumulated a 21S particle. Precursor 26-28S and 30S particles contain 17S precursor RNA which can be chased into mature RNA by a temperature shift-up. The nature of accumulation of precursor particles was discussed in relation to the scheme of biosynthesis of the 30S ribosomal subunit.  相似文献   

19.
Summary Ribosomal protein S5 was isolated from wild type Bacillus subtilis ATCC 6633 and from a spectinomycin resistant mutant (BSPC 111) derived from spectinomycin sensitive to resistance is accomtrypsin and all the tryptic peptides were isolated by column- and paper-chromatography. By comparative amino acid analyses of the peptides, it was demonstrated that the S5 from the mutant differs from the wild type S5 by a replacement of one amino acid, namely lysine by isoleucine in the peptide T9. The results are compared with E. coli spectinomycin resistant mutants.  相似文献   

20.
A plastid transformation protocol was developed for Lesquerella fendleri, a species with a high capacity for plant regeneration in tissue culture. Transformation vector pZS391B carried an aadA16gfp marker gene conferring streptomycin–spectinomycin resistance and green fluorescence under UV light. Biolistic transformation of 51 Lesquerella leaf samples, followed by spectinomycin selection, yielded two transplastomic clones. The AAD–GFP fusion protein, the marker gene product, was localized to chloroplasts by confocal laser microscopy. Fertile plants and seed progeny were obtained in line Lf-pZS391B-1. In the 51 samples a large number (108) of spontaneous mutants were identified. In five of the lines spectinomycin resistance was localized to a conserved stem structure by sequencing 16S rRNA genes. Success in L. fendleri, a wild oilseed species, extends plastid transformation beyond Arabidopsis thaliana in the Brassicaceae family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号