首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We investigated the intracellular distribution of tryptophan decarboxylase (TDC) (EC 4.1.1.28) in Catharanthus roseus hairy roots using immunofluorescence and immunogold techniques. TDC was detected by immunofluorescence localization in the cytosol and in the apoplastic region of the meristematic cells of the roots, with a slight enrichment in the epidermal cells of the root cap and in the meristematic region. In the enlargement zone, TDC was localized only in the first three layers of the cortex. In the maturation zone, the enzyme was not present. Immunogold studies confirmed that the enzyme was localized in the cytosol of the meristematic region, and intense gold labeling was found in the apoplastic zone. A protein fraction isolated from the apoplastic zone and assayed for TDC activity showed high activity.  相似文献   

4.
A transgenic cell suspension culture of Nicotiana tabacum L. `Petit Havana' SR1 was established expressing tryptophan decarboxylase and strictosidine synthase cDNA clones from Catharanthus roseus (L.) G. Don under the direction of cauliflower mosaic virus 35S promoter and nopaline synthase terminator sequences. During a growth cycle, the transgenic tobacco cells showed relatively constant tryptophan decarboxylase activity and an about two- to sixfold higher strictosidine synthase activity, enzyme activities not detectable in untransformed tobacco cells. The transgenic culture accumulated tryptamine and produced strictosidine upon feeding of secologanin, demonstrating the in vivo functionality of the two transgene-encoded enzymes. The accumulation of strictosidine, which occurred predominantly in the medium, could be enhanced by feeding both secologanin and tryptamine. No strictosidine synthase activity was detected in the medium, indicating the involvement of secologanin uptake and strictosidine release by the cells. Received: 25 February 1996 / Revision received: 16 August 1996 / Accepted: 30 September 1996  相似文献   

5.
Nucleotide sequence of the PR-1 gene of Nicotiana tabacum   总被引:7,自引:0,他引:7  
A gene encoding one of the pathogenesis-related proteins, PR1a, and two related pseudogenes were isolated from Nicotiana tabacum. The cloned PR1a gene (pPR-gamma) and one of the pseudogenes (pPR-alpha) were sequenced and found to have similar structures. The sequence of pPR-gamma was quite similar to that of the cDNA clone of PR1a. The plasmid pPR-gamma did not contain an intron and had a typical promoter sequence in the 5'-flanking region.  相似文献   

6.
7.
8.
9.
The aim of this study was to use whole cell catalysts as tools for modification of selected resin acids in order to obtain value-added functional derivatives. The enzymatic bioconversion capacities of two plant species were tested towards dehydroabietic acid. Dehydroabietic acid (DHA) is an abundant resin acid in conifers, representing a natural wood protectant. It is also one of the constituents found in by-products of the kraft chemical pulping industry. DHA was fed to tobacco (Nicotiana tabacum) and Madagascar periwinkle (Catharanthus roseus) plant cell and tissue cultures and bioconversion product formation was monitored using NMR analysis. Both plant species took up DHA from culture medium, and various types of typical detoxification processes occurred in both cultures. In addition, diverse responses to DHA treatment were observed, including differences in uptake kinetics, chemical modification of added substrate and changes in overall metabolism of the cells. Interestingly, Catharanthus roseus, a host species for pharmaceutically valuable terpenoid indole alkaloids, exhibited a very different bioconversion pattern for exogenously applied DHA than tobacco, which does not possess a terpenoid indole pathway. In tobacco, DHA is readily glycosylated in the carbonyl group, whereas in periwinkle it is proposed that a cytochrome P450-catalyzed enzymatic detoxification reaction takes place before the formation of glycosylated product.  相似文献   

10.
The cultured cells of Nicotiana tabacum (white cells) converted regioselectively exogenous 2-, 3-, and 4-hydroxybenzyl alcohols into corresponding hydroxybenzyl-β-d-glucopyranoside. (RS)-1-Phenylethanol having chiral center in its substituent was also glucosylated to give 1-phenylethyl-β-d-glucopyranoside by the cultured cells of N. tabacum (white and green cells) and Catharanthus roseus. The glucosylation with the green cells of N. tabacum occurred enantioselectively to give the glucoside of (S)-alcohol preferentially, while the glucosylation with the white cells of N. tabacum and the C. roseus cells gave preferentially the glucoside of (R)-alcohol.  相似文献   

11.
12.
W. Noé  J. Berlin 《Planta》1985,166(4):500-504
Tryptophan decarboxylase (EC 4.2.1.27) is synthesized de-novo by Catharanthus roseus cells shortly after the cells have been transferred into culture medium in which monoterpenoid indole alkaloids are formed. The enzyme production, monitored by in-vivo labelling with [35S]methionine and immunoprecipitation, precedes the apparent maximal enzyme activity by 10–12 h. From the time course of the descending enzyme activity after induction, a half-life of 21 h for tryptophan decarboxylase in C. roseus cell suspensions is calculated. A comparison of the polyadenylated-RNA preparations from C. roseus cells indicates that mRNA activity for tryptophan decarboxylase is only detected in cells grown in the production medium. The importance of tryptophan decarboxylase induction with respect to the accumulation of th corresponding alkaloids is discussed.Abbreviation TDC tryptophan decarboxylase  相似文献   

13.
14.
15.
An assay is described for the enzyme tryptophan decarboxylase from plant cell suspension cultures. It is based on the fluorometric detection of tryptamine by HPLC on a LiChrosorb RP-8 Select B column. Tryptophan decarboxylase from Catharanthus roseus was induced by transferring 14-day-old cells into an induction medium. Optimum activity was found 2 days after transfer, the increase being 5- to 10-fold. When kept at -15 degrees C the crude enzyme lost half its activity in about 7 days. The rate of the decarboxylation reaction was linear for at least 3 h at 35 degrees C.  相似文献   

16.
17.
Catharanthus roseus cells were cultured in three types of media. These media were: a low sucrose subculture medium and two high sucrose media, each of which differed in their mineral and hormonal contents. The kinetics of tryptophan decarboxylase activity and the accumulations of tryptophan, tryptamine, ajmalicine and serpentine were different in each series but no correlation between maximum enzyme activity and alkaloid contents was observed. Ajmalicine and serpentine productions were unaffected by addition of Trp to the media, whereas addition of secologanin enhanced alkaloid production. The results seem to imply that the terpenoid pathway is the limiting factor in alkaloid production in C. roseus cells.  相似文献   

18.
In plants, the indole pathway provides precursors for a variety of secondary metabolites. In Catharanthus roseus, a decarboxylated derivative of tryptophan, tryptamine, is a building block for the biosynthesis of terpenoid indole alkaloids. Previously, we manipulated the indole pathway by introducing an Arabidopsis feedback-insensitive anthranilate synthase (AS) alpha subunit (trp5) cDNA and C. roseus tryptophan decarboxylase gene (TDC) under the control of a glucocorticoid-inducible promoter into C. roseus hairy roots [Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004a. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng. 86, 718-727; Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004b. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabol. Eng. 6, 268-276]. Inducible expression of either or both transgenes did not lead to significant increases in overall alkaloid levels despite the considerable accumulation of tryptophan and tryptamine. In an attempt to more successfully engineer the indole pathway, a wild type Arabidopsis ASbeta subunit (ASB1) cDNA was constitutively expressed along with the inducible expression of trp5 and TDC in C. roseus hairy roots. Transgenic hairy roots expressing both trp5 and ASB1 show a significantly greater resistance to feedback inhibition of AS activity by tryptophan than plants expressing only trp5. In fact, a 4.5-fold higher concentration of tryptophan is required to achieve 50% inhibition of AS activity in plants overexpressing both genes than in plants expressing only trp5. In addition, upon a 3 day induction during the exponential phase, a trp5:ASB1 hairy root line produced 1.8 times more tryptophan (specific yield ca. 3.0 mg g(-1) dry weight) than the trp5 hairy root line. Concurrently, tryptamine levels increase up to 9-fold in the induced trp5:ASB1 line (specific yield ca. 1.9 mg g(-1) dry weight) as compared with only a 4-fold tryptamine increase in the induced trp5 line (specific yield ca. 0.3 mg g(-1) dry weight). However, endogenous TDC activities of both trp5:ASB1 and trp5 lines remain unchanged irrespective of induction. When TDC is ectopically expressed together with trp5 and ASB1, the induced trp5:ASB1:TDC hairy root line accumulates tryptamine up to 14-fold higher than the uninduced line. In parallel with the remarkable accumulation of tryptamine upon induction, alkaloid accumulation levels were significantly changed depending on the duration and dosage of induction.  相似文献   

19.
The metabolism of GA12 and its precursors was investigated incultured cells of seven cell lines of Nicotiana tabacum andthree cell lines of Catharanthus roseus using l4C-labeled substrates.The presence of a metabolic pathway from ent-7-hydroxykaurenoicacid to GA53 via GA12-aldehyde and GA12 was demonstrated inthe cultured cells. GA12 was effectively converted to GA53 incells of BY-2, 2b-4, 2b-13 and CG from N. tabacum. By contrast,GA53 was not converted to any other GAs in all of the linesof cells examined. The metabolism of C19-GAs was also examinedusing 3H-labeled substrates. The conversion of GA20 to GA29and GA, and of GA4 to GA34 occurred more efficiently in cellsfrom C. roseus than in cells from N. tabacum. However, 13-hydroxylationof GA4 and GA9 was not observed in any of the cell culturesexamined. Among the various metabolites, GA53, GA29 and GA34were identified by full-scan GC/MS. (Received December 20, 1990; Accepted May 27, 1991)  相似文献   

20.
Tryptophan decarboxylase (TDC, EC 4.1.1.28) from Catharanthus roseus hairy roots was purified 80-fold. Antibodies against TDC were obtained and they recognized only one protein of 55 kDa in crude extracts from hairy root cultures. Elicitation of transformed root cultures with macerozyme yielded a marked increase in TDC activity, which was accompanied by a similar increase in the amount of immunoreactive TDC protein. These results suggest that the alkaloid accumulation, produced by elicitation, requires the synthesis of new TDC polypeptide in C. roseus root cultures and establishes important differences in the regulatory control of this enzyme in root cultures compared to developing seedlings, where the posttranslational regulation apparently plays a major role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号