首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amplifiable AUD1 element of Streptomyces lividans 66 consists of two copies of a 4.7 kb sequence flanked by three copies of a 1 kb sequence. The DNA sequences of the three 1 kb repeats were determined. Two copies (left and middle repeats) were identical: (1009 by in length) and the right repeat was 1012 bp long and differed at 63 positions. The repeats code for open reading frames (ORFs) with typical Streptomyces codon usage, which would encode proteins of about 36 kD molecular weight. The sequences of these ORFs suggest that they specify DNA-binding proteins and potential palindromic binding sites are found adjacent to the genes. The putative amplification protein encoded by the right repeat was expressed in Escherichia coli.  相似文献   

2.
In the large spacer of the rDNA of Vicia faba, multiples of a 0.32 kilobasepair (kb) sequence reiterate to various degrees. We sequenced the repetitious region consisting of the repeating sequences and its flanking regions using two cloned plasmids, which contain V. faba rDNA segments encompassing the whole region of the large spacer. The repetitious region was found to consist of multiple complete copies and one truncated copy of a 325 bp repeat unit and to be flanked by direct repeat sequences of about 150 bp. The set of direct repeats located at either side of the repetitious region differed from each other with about 10% sequence heterogeneity. However, nucleotide sequences of the direct repeats were well conserved between the two clones examined. Southern blot hybridization indicated a widespread distribution within the whole V. faba genome of some related sequences with high homologies to the 325 bp repeat unit and to the direct repeats.  相似文献   

3.
The amplifiable unit of DNA no. 1 (AUD1) of Streptomyces lividans consists of three 1 kb repeats (left direct repeat, LDR; middle direct repeat, MDR; and the slightly different right direct repeat, RDR) and two 4.7 kb repeats alternately arranged in identical orientation to each other. Both 4.7 kb repeats have been sequenced. They are identical and contain one open reading frame ( orf4.7  ). The deduced amino acid sequence has a low similarity to chitinases, and two amino acid repeats present high similarities to fibronectin type III modules. Sequencing had previously shown that the ORF corresponding to each 1 kb repeat encodes a putative DNA-binding protein. Crude extracts of Escherichia coli overexpressing the orfRDR- encoded protein and of S. lividans Jni1, having a high amplification of AUD1 and therefore orfMDR , were used in gel retardation assays. The orfRDR - and probably the orfMDR -encoded proteins can bind to an imperfect palindromic sequence upstream from MDR and RDR and to another sequence downstream from RDR. An extrachromosomal DNA amplification system was constructed containing different combinations of the sequences composing AUD1. In mutants having a deletion of the chromosomal AUD1, the 4.7 kb repeats could be reduced in size, mutated or replaced by E. coli DNA without altering the ability to amplify when RDR was present. Therefore, the only function of the 4.7 kb repeats in amplification is to provide directly repeated DNA sequences. When RDR was lacking or mutated, no amplification was observed. This strongly suggests that the DNA-binding protein encoded by orfRDR is required for AUD1 amplification.  相似文献   

4.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

5.
There are over 6000 internally eliminated DNA sequences (IESs) in the Tetrahymena genome that are deleted in a programmed fashion during the development of a polyploid, somatic macronucleus from a diploid germline micronucleus. Recently, based on several results, a homology and small RNA-based mechanism has been proposed for the efficient elimination of IES elements. Since the RNAi machinery is proposed to be intimately involved in silencing potentially harmful repeats such as transposons and viruses, characterization of repeats and the conditions for their developmental elimination from the somatic genome is warranted. Three short (500–600 bp) repeat families, members of which had been experimentally identified in IESs, that is, in micronucleus-specific DNA, are examined here using the Tetrahymena genome database. Members of all three families display varied degrees of truncation and are represented in macronuclear sequences. A 200 bp segment of one of the families can appear in the genome on its own, or as part of a 600 bp repeat detected experimentally, or in association with an unrelated 1 kb sequence to form a 1.2 kb repeat that is also frequently truncated. The 1 kb sequence contains a 300 bp section similar to a repeat associated with a non-long terminal repeat-like element and is often found accompanied by several more copies of this shorter repeat. These observations indicate that transposition may have had a role in the evolution of the short repeat families.  相似文献   

6.
7.
The 6.4 kb transposable element Tpn1 belonging to the En/Spm family was found within one of the DFR (dihydroflavonol-4-reductase) genes for anthocyanin biosynthesis in a line of Japanese morning glory (Pharbitis nil) bearing variegated flowers. Sequencing of the Tpn1 element revealed that it is 6412 by long and carries 28-bp perfect terminal inverted repeats. Its subterminal repetitive regions, believed to be the cis-acting sequences for transposition, show striking structural features. Twenty-two copies of the 10-bp sequence motif GACAACGGTT can be found as direct or inverted repeats within 650 by of the 5′ end of the element, and 33 copies of the sequence motif lie within 800 by of the 3′ terminus. All these 22 copies of the sequence motif near the 5′ terminus and 30 copies in the 3′ terminal region are arranged as inverted repeats and 3–8 by AT-rich sequences are detected between these inverted repeats. In addition, four copies of 122-bp tandem repeats and six copies of 104-bp tandem repeats are present in the 5′ and 3′ subterminal repetitive regions, respectively. No large open reading frame characteristic of autonomous elements of the En/Spm family can be detected within the element. The results are discussed with respect to heritable changes in flower variegation in this line of Japanese morning glory.  相似文献   

8.
A unique group of large icosahedral viruses that infect a unicellular green alga (Chlorella sp. NC64A) were isolated from freshwater sources in Japan. These viruses contain a linear double-stranded DNA (dsDNA) genome with hairpin ends. A physical map was constructed for the genomic DNA of CVK1 (Chlorella virus isolated in Kyoto, no. 1) by pulsed-field gel electrophoresis of restriction fragments. The nucleotide sequences around both termini of the CVK1 DNA revealed the presence of inverted terminal repeats (ITR) of approximately 1.0 kb. Adjacent to the ITR, unique sequence elements of 10 to 20 by were directly repeated 20 to 30 times in tandem array. Several copies of these repeat elements were deleted in virus mutants that were occasionally generated from Chlorella cells that were in a putative CVK1 carrier state. These repeats might represent a hot spot of rearrangement in the CVK1 genome.  相似文献   

9.
The mouse genomic locus containing the oncogene c-mos was analyzed for repetitive DNA sequences. We found a single B1 repeat 10 kb upstream and three B1 repeats 0.6 kb, 2.7 kb, and 5.4 kb, respectively, downstream from c-mos. The B1 repeat closest to c-mos contains an internal 7-bp duplication and a 18-bp insertion. Localized between the last two B1 repeats is a copy of a novel mouse repeat. Sequence comparison of three copies of this novel repeat family shows that they a) contain a conserved BglII site, b) are approximately 420 bp long, c) possess internal 50-bp polypurine tracts, and d) have structural characteristics of transposable elements. They are present in about 1500 copies per haploid genome in the mouse, but are not detectable in DNA of other mammals. The BglII repeat downstream from c-mos is interrupted by a single 632-bp LTR element. We estimate that approximately 1200 copies of this element are present per haploid genome in BALB/c mice. It shares sequence homology in the R-U5 region with an LTR element found in 129/J mice.  相似文献   

10.
We have analyzed the sequence organization of the central spacer region of the extrachromosomal ribosomal DNA from two strains of the acellular slime mold Physarum polycephalum. It had been inferred previously from electron microscopy that this region, which comprises about one third of the 60 kb3 palindromic rDNA, contains a complex series of inverted repetitious sequences. By partial digestion of end-labeled fragments isolated from purified rDNA and from rDNA fragments cloned in Escherichia coli, we have constructed a detailed restriction map of this region. The 11 kb of spacer DNA of each half molecule of rDNA contains the following elements: (a) two separate regions, one of 1.1 kb and one of 2.1 kb, composed of many direct repeats of the same 30 base-pair unit; (b) a region of 4.4 kb composed of a complex series of inverted repeats of a 310 base-pair unit; (c) another region of 1.6 kb composed of inverted repeats of the same 310 base-pair unit located directly adjacent to the center of the rDNA; (d) two copies of a unique sequence of 0.85 kb, which probably contains a replication origin. Some of the CpG sequences in the spacer resist cleavage by certain restriction endonucleases and thus appear to be methylated. The lack of perfect symmetry about the central axis and the arrangement of inverted repeated sequences explain the complex pattern of branches and forks of the fold-back molecules previously observed by electron microscopy. Comparison of the rDNA restriction maps from the two strains of Physarum suggests that the repeat units in the spacer are undergoing concerted evolution. We propose a model to explain the evolutionary origin of the several palindromic axes in the Physarum rDNA spacer.  相似文献   

11.
Sequences in the cloned Drosophila melanogaster rDNA fragments described by Dawid et al. (1978) were compared by heteroduplex mapping. The nontranscribed spacer regions in all fragments are homologous but vary in length. Deletion loops were observed at variable positions in the spacer region suggesting that spacers are internally repetitious.Many rDNA repeats in D. melanogaster have a 28 S gene interrupted by a region named the ribosomal insertion. Insertions of 0.5, 1 and 5 kb were found in repeat-length EcoRI fragments. These DNA regions, named type 1 insertions, are homologous at their right ends. Although 1 kb insertions are quite precisely twice as large as 0.5 kb insertions they do not represent a duplication of the shorter sequence. Some insertions have at least one EcoRI site and therefore yield EcoRI fragments which are only part of a repeat. The sequences in two cloned right-hand partial insertion sequences are homologous, but the sequences in two lefthand partial insertions are not. None of the EcoRI-restrictable insertion sequences has any homology to any part of type 1 insertions; they are thus grouped together as type 2. Evidence for insertion sequences of at least two types in uncloned rDNA was obtained by annealing a cloned fragment with a 1 kb insertion to genomic rDNA. About 15% of the rDNA repeats show substitution type loops between the 1 kb type 1 insertion derived from the cloned fragment and type 2 insertions in the rDNA.  相似文献   

12.
The genomes of Mus musculus and other rodent species share a long conserved family of sequences that are dispersed and abundant (approx. 20,000 copies), and that have several novel features of organization and evolution. EcoR1 restriction of M. musculus DNA reveals a prominent 1350 bp2 set of sequences. Two nonhomologous sequences of 850 and 500 bp, representing almost the total population of the 1350 bp repeats, were used to examine the detailed organization of the dispersed family and its surrounding sequences using a combination of restriction analysis and “Southern” hybridization. The 1350 bp sequence is contained within a longer repeating unit of approximately 3 kb that is dispersed amongst a wide variety of non-homologous and seemingly non-repetitive sequences. At some sites within the 3 kb repeat, considerable sequence heterogeneity has been found between members of the family, such that the family can be divided into largely non-overlapping subsets (or “segments”) according to the positioning of HinIII sites. Underlying the segmental organization there is a low background overlap of each segment with every other. Some but not all members of the family and its variants have been located on the X-chromosome in a Chinese hamster, M. musculus, X chromosome cell line: suggesting a wide genomic dispersion of the family. Homologous repeated sequences to the M. musculus 1350 bp repeat have been identified in species of Mus and Apodemus, with strikingly similar features of organization and dispersion. In M. spretus a 1350 bp sequence is contained within a dispersed repeat of at least 2·9 kb. However, the majority of M. spretus repeats contain an additional restriction site not present in the equivalent M. musculus array, suggesting a mechanism of widespread substitution or “conversion” of one variant by another in each genome. Apodemus sylvaticus possesses two dispersed and homologous families of 1350 bp and 1850 bp repetition, respectively, which contain sequences that have diverged from M. musculus to differing extents. A. mystacinus possesses only one family of dispersed and homologous repeats of 1850 bp. The majority of members within each Apodemus homologous family also contain characteristic variant restriction-site arrangements. The mechanisms underlying the spread of such variants within each array; the generation of segmental patterns; and the evolutionary conservation of this mouse interspersed family (MIF-1) are discussed in relation to the present knowledge of the organization and activity of other dispersed sequence families.  相似文献   

13.
Full-length proviral DNA of Fujinami sarcoma virus (FSV) of chickens was molecularly cloned and characterized. An analysis of FSV DNA integrated in mammalian cells showed that restriction endonuclease SacI has a single cleavage site on FSV DNA. Unintegrated closed circular FSV DNA obtained from newly infected cells was linearized by digestion with SacI and cloned into λgtWES·λB. The following three different molecules were isolated: FSV-1 (4.4 kilobases [kb]) and FSV-2 (4.7 kb), which appeared to be full-length FSV DNA molecules containing either one or two copies of the long terminal repeat structure, and FSV-3 (6 kb), which consisted of part FSV DNA and part DNA of unknown origin. An analysis of the structure of cloned FSV-1 and FSV-2 DNA molecules by restriction endonuclease mapping and hybridization with appropriate probes showed that about 2.6 kb of the FSV-unique sequence called FSV-fps is located in the middle of the FSV genome and is flanked by helper virus-derived sequences of about 1.3 kb at the 5′ end and 0.5 kb at the 3′ end. The long terminal repeats of FSV were found to have no cleavage site for either EcoRI or PvuI. Upon transfection, both FSV-1 DNA and FSV-2 DNA were able to transform mammalian fibroblasts. Four 32P-labeled DNA fragments derived from different portions of the FSV-fps sequence were used for hybridization to viral RNAs. We found that sequences within the 3′ half of the FSV-fps gene are homologous to RNAs of PRCII avian sarcoma virus and the Snyder-Theilen strain of feline sarcoma virus, both of which were previously shown to contain transforming genes related to FSV-fps. These results suggest that the 3′ portion of the FSV-fps sequence may be crucial for the transforming activity of fps-related oncogenic sequences.  相似文献   

14.
The genomes of several thermophilic members of the genus Methanobacterium were analyzed for homology to the related restriction-modification plasmids pFVI and pFZ1 from M. thermoformicicum strains THF and Z-245, respectively. Two plasmid regions, designated FR-I and FR-II, could be identified with chromosomal counterparts in six Methanobacterium strains. Multiple copies of the pFVI-specific element FR-I were detected in the M. thermoformicicum strains CSM3, FF1, FF3 and M. thermoautotrophicum ΔH. Sequence analysis showed that one FR-I element had been integrated in almost identical sequence contexts into the chromosomes of the strains CSM3 and AH. Comparison of the FR-I elements from these strains with that from pFVI revealed that they consisted of two subfragments, boxI (1118 bp) and boxII (383 bp), the order of which is variable. Each subfragment was identical on the sequence level with the corresponding plasmid-borne element and was flanked by terminal direct repeats with the consensus sequence A(A/T)ATTT. These results suggest that FR-I represents a mobile element. FR-II was located on both plasmids pFVI and pFZI, and on the chromosome of M. thermoformicicum strains THF, CSM3 and HN4. Comparison of the nucleotide sequences of the two plasmid FR-II copies and that from the chromosome of strain CSM3 showed that the FR-II segments were approximately 2.5–3.0 kb in size and contained large open reading frames (ORFs) that may encode highly related proteins with an as yet unknown function.  相似文献   

15.
The unicellular green alga Chlorella vulgaris (strain C-169) has a small genome (38.8 Mb) consisting of 16 chromosomes, which can be easily separated by CHEF gel electrophoresis. We have isolated and characterized the smallest chromosome (chromosome 1, 980 kb) to elucidate the fundamental molecular organization of a plant-type chromosome. Restriction mapping and sequence analyses revealed that the telomeres of this chromosome consist of 5′-TTTAGGG repeats running from the centromere towards the termini; this sequence is identical to those reported for several higher plants. This sequence is reiterated approximately 70 times at both termini, although individual clones exhibited microheterogeneity in both sequence and copy number of the repeats. Subtelomeric sequences proximal to the termini were totally different from each other: on the left arm, unique sequence elements (14–20 bp) which were specific to chromosome I, form a repeat array of 1.7 kb, whereas a 1.0 kb sequence on the right arm contained a poly(A)-associated element immediately next to the telomeric repeats. This element is repeated several times on chromosome I and many times on all the other chromosomes of this organism.  相似文献   

16.
17.
Within a 7 kb segment of the mtDNA molecule of the root knot nematode, Meloidogyne javanica, that lacks standard mitochondrial genes, are three sets of strictly tandemly arranged, direct repeat sequences: approximately 36 copies of a 102 ntp sequence that contains a TaqI site; 11 copies of a 63 ntp sequence, and 5 copies of an 8 ntp sequence. The 7 kb repeat-containing segment is bounded by putative tRNAasp and tRNAf-met genes and the arrangement of sequences within this segment is: the tRNAasp gene; a unique 1,528 ntp segment that contains two highly stable hairpin-forming sequences; the 102 ntp repeat set; the 8 ntp repeat set; a unique 1,068 ntp segment; the 63 ntp repeat set; and the tRNAf-met gene. The nucleotide sequences of the 102 ntp copies and the 63 ntp copies have been conserved among the species examined. Data from Southern hybridization experiments indicate that 102 ntp and 63 ntp repeats occur in the mtDNAs of three, two and two races of M.incognita, M.hapla and M.arenaria, respectively. Nucleotide sequences of the M.incognita Race-3 102 ntp repeat were found to be either identical or highly similar to those of the M.javanica 102 ntp repeat. Differences in migration distance and number of 102 ntp repeat-containing bands seen in Southern hybridization autoradiographs of restriction-digested mtDNAs of M.javanica and the different host races of M.incognita, M.hapla and M.arenaria are sufficient to distinguish the different host races of each species.  相似文献   

18.
PK Reddy  S Ramlal  MH Sripathy  H Batra 《Gene》2012,492(1):104-109
A potential relationship between transposon-derived repeats (TDR) and human germline methylation is of biological importance since many genes are flanked by TDR and methylation could affect the expression of nearby genes. Furthermore, DNA methylation has been suggested as a global defense mechanism against genome instability threatened by TDR. We studied the correlation between the density of HapMap methyl-associated SNPs (mSNPs), a marker of germline methylation, and proportion of TDR.After correcting for confounding variables, we found a negative correlation between proportion of Alu repeats and mSNP density for 125-1000 kb windows. Similar results were found for the most active subgroup of repeats. In contrast, a negative correlation between proportion of L1 repeats and mSNP density was found only in the larger 1000 kb windows.Using methylation data on germ cells (sperm) from the Human Epigenome Project, we found a lower proportion of Alu repeats adjacent (3-15 kb) to hypermethylated amplicons. On the contrary, there was a higher proportion of L1 repeats in the 3-5 kb of sequence flanking hypermethylated amplicons but not in the 10-15 kb flanks.Our data indicate a differential response to the major repeat families and that DNA methylation is unlikely to be a uniform global defense system against all TDR. It appears to play a role for the L1 subgroup, with sequences adjacent to L1 repeats methylated in response to their proximity. In contrast, sequences adjacent to Alu repeats appear to be hypomethylated, arguing against a role of methylation in germline defense against those elements.  相似文献   

19.
《Gene》1998,216(2):245-254
Minisatellite tandem repeat elements are well known components of vertebrate genomes, but have not yet been extensively characterized in lower eukaryotes. We describe two unusual, AT-rich minisatellites of the protozoan parasite Theileria parva whose sequences are unrelated to the G/C-rich `chi minisatellite superfamily' of vertebrate and plant genomes. The T. parva tandem repeats, one with a conserved sequence T2-5ACACA (6–17 copies), and the other with a 6-bp core sequence of either ACTATA or TATACT associated with additional variable sequences in repeats of 10–17 bp (3–7 copies), were closely linked at more than 20 sites in the T. parva genome, separated by 390, 510 and 660 bp at three loci analysed in detail. Such linkage is without precedent in minisatellites so far analysed in other organisms. The minisatellite loci were widely dispersed on 13 out of 33 genomic SfiI fragments, on all four T. parva chromosomes and did not exhibit a telomeric bias in their distribution. Analysis of flanking sequences revealed no obvious conserved sequences between the five loci, or other multicopy repeat sequences outside the minisatellite regions. The T2-5 ACACA minisatellite was highly effective as a multilocus fingerprinting probe for discrimination of T. parva isolates. Analysis of two individual minisatellite loci revealed variation between the genomic DNAs of two T. parva isolates in the copy number of the constituent repeats within the array, similar to that typical of vertebrate minisatellites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号