首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.  相似文献   

2.
Transport of acetyl-CoA between intracellular compartments is mediated by carnitine acetyltransferases (Cats) that reversibly link acetyl units to the carrier molecule carnitine. The genome of the opportunistic pathogenic yeast Candida albicans encodes several (putative) Cats: the peroxisomal and mitochondrial Cat2 isoenzymes encoded by a single gene and the carnitine acetyltransferase homologs Yat1 and Yat2. To determine the contributions of the individual Cats, various carnitine acetyltransferase mutant strains were constructed and subjected to phenotypic and biochemical analyses on different carbon sources. We show that mitochondrial Cat2 is required for the intramitochondrial conversion of acetylcarnitine to acetyl-CoA, which is essential for a functional tricarboxylic acid cycle during growth on oleate, acetate, ethanol, and citrate. Yat1 is cytosolic and contributes to acetyl-CoA transport from the cytosol during growth on ethanol or acetate, but its activity is not required for growth on oleate. Yat2 is also cytosolic, but we were unable to attribute any function to this enzyme. Surprisingly, peroxisomal Cat2 is essential neither for export of acetyl units during growth on oleate nor for the import of acetyl units during growth on acetate or ethanol. Oxidation of fatty acids still takes place in the absence of peroxisomal Cat2, but biomass formation is absent, and the strain displays a growth delay on acetate and ethanol that can be partially rescued by the addition of carnitine. Based on our results, we present a model for the intracellular flow of acetyl units under various growth conditions and the roles of each of the Cats in this process.  相似文献   

3.
4.
Mutants in Aspergillus niger unable to grow on acetate as a sole carbon source were previously isolated by resistance to 1.2% propionate medium containing 0.1% glucose. AcuA mutants lacked acetyl-CoA synthetase (ACS) activity and acuB mutants lacked both ACS and isocitrate lyase activity. An acuA mutant was transformed to the acu+ phenotype with a clone of ACS (facA) from Aspergillus nidulans. The acuB mutant was transformed with the A. niger facB clone which has been identified by cross-hybridisation of an A. nidulans facB clone. These results confirm that acuA in A. niger is the gene for ACS and acuB is analogous to the A. nidulans facB regulatory gene.  相似文献   

5.
When bacterial colonies age most cells enter a stationary phase, but sub-populations of mutant bacteria can continue to grow and accumulate. These sub-populations include bacteria with mutations in rpoB (RNA polymerase β-subunit) or rpoS (RNA polymerase stress-response sigma factor). Here we have identified acetate as a nutrient present in the aging colonies that is utilized by these mutant subpopulations to support their continued growth. Proteome analysis of aging colonies showed that several proteins involved in acetate conversion and utilization were upregulated during aging. Acetate is known to be excreted during the exponential growth phase but can be imported later during the transition to stationary phase and converted to acetyl-CoA. Acetyl-CoA is used in multiple processes, including feeding into the TCA cycle, generating ATP via the glyoxylate shunt, as a source of acetyl groups for protein modification, and to support fatty acid biosynthesis. We showed that deletion of acs (encodes acetyl-CoA synthetase; converts acetate into acetyl-CoA) significantly reduced the accumulation of rpoB and rpoS mutant subpopulations on aging colonies. Measurement of radioactive acetate uptake showed that the rate of conversion decreased in aging wild-type colonies, was maintained at a constant level in the rpoB mutant, and significantly increased in the aging rpoS mutant. Finally, we showed that the growth of subpopulations on aging colonies was greatly enhanced if the aging colony itself was unable to utilize acetate, leaving more acetate available for mutant subpopulations to use. Accordingly, the data show that the accumulation of subpopulations of rpoB and rpoS mutants on aging colonies is supported by the availability in the aging colony of acetate, and by the ability of the subpopulation cells to convert the acetate to acetyl-CoA.  相似文献   

6.
Ethanol metabolism in Acinetobacter sp. is shown to be limited by the rate of acetate assimilation, a reaction catalyzed by acetyl-CoA synthetase (EC 6.2.1.1). Effects of ions (sodium, potassium, and magnesium), by-products of ethanol and acetaldehyde oxidation (NADH and NADPH), and pantothenic acid on this enzyme are studied (sodium, NADH, and NADPH inhibit acetyl-CoA synthetase; pantothenic acid, potassium, and magnesium act as enzyme activators). Conditions of culturing were developed under which ethanol, acetaldehyde, and acetate in Acinetobacter cells were oxidized at the same rates, producing a threefold increase in the activity of acetyl-CoA synthetase in the cell-free extract. The results of studies of acetyl-CoA synthetase regulation in a mutant strain of Acinetobacter sp., which is incapable of forming exopolysaccharides, provide a basis for refining the technology of ethapolan production involving the use of C2 substrates.  相似文献   

7.
8.
Anaerobic ammonium-oxidizing bacteria were recently shown to use short-chain organic acids as additional energy source. The AMP-forming acetyl-CoA synthetase gene (acs) of Kuenenia stuttgartiensis, encoding an important enzyme involved in the conversion of these organic acids, was identified and heterologously expressed in Escherichia coli to investigate the activation of several substrates, that is, acetate, propionate and butyrate. The heterologously expressed ACS enzyme could complement an E. coli triple mutant deficient in all pathways of acetate activation. Activity was observed toward several short-chain organic acids, but was highest with acetate. These properties are in line with a mixotrophic growth of anammox bacteria. In addition to acs, the genome of K. stuttgartiensis contained the essential genes of an acetyl-CoA synthase/CO dehydrogenase complex and genes putatively encoding two isoenzymes of archaeal-like ADP-forming acetyl-CoA synthetase underlining the importance of acetyl-CoA as intermediate in the carbon assimilation metabolism of anammox bacteria.  相似文献   

9.
The anaerobic hyperthermophilic archaea Desulfurococcus amylolyticus, Hyperthermus butylicus, Thermococcus celer, Pyrococcus woesei, the hyperthermophilic bacteria Thermotoga maritima and Clostridium thermohydrosulfuricum and the aerobic mesophilic archaeon Halobacterium saccharovorum were grown either on complex media, on sugars or on pyruvate as carbon and energy sources. During growth acetate was formed as fermentation product by all organisms. The enzymes involved in acetyl-CoA formation from pyruvate and in acetate formation from acetyl-CoA were investigated:
  1. Cell extracts of all species, both archaea and bacteria, catalyzed the coenzyme A-dependent oxidative decarboxylation of pyruvate with viologen dyes or with Clostridium pasteurianum ferredoxin as electron acceptors indicating a pyruvate: ferredoxin oxidoreductase to be operative in acetyl-CoA formation from pyruvate.
  2. Cell extracts of all archaeal species, both hyperthermophiles (D. amylolyticus, H. butylicus, T. celer, P. woesei) and the mesophile H. saccharovorum, contained an acetyl-CoA synthetase (ADP forming), which catalyzes both acetate formation from acetyl-CoA and ATP synthesis from ADP and phosphate (Pi): Acetyl-CoA+ADP+Pi?Acetate + ATP+CoA. Phosphate acetyltransferase and acetate kinase could not be detected.
  3. Cell extracts of the hyperthermophilic (eu)bacteria T. maritima and C. thermohydrosulfuricum contained phosphate acetyltransferase and acetate kinase rather than acetyl-CoA synthetase (ADP forming).
These data indicate that acetyl-CoA synthetase (ADP forming) represents a typical archaeal property rather than an enzyme specific for hyperthermophiles. It is proposed that in all acetate forming archaea the formation of acetate and of ATP from acetyl-CoA, ADP and Pi are catalyzed by acetyl-CoA synthetase (ADP forming), whereas in all acetate forming (eu)bacteria these reactions are catalyzed by two enzymes, phosphate acetyltransferase and acetate kinase.  相似文献   

10.
This study was performed to produce ethanol from acetate using a genetically engineered Ralstonia eutropha. In order to genetically modify R. eutropha H16, phaCAB operon encoding metabolic pathway genes from acetyl-CoA to polyhydroxybutyrate (PHB) was deleted and adhE encoding an alcohol dehydrogenase from Escherichia coli was overexpressed for conversion of acetyl-CoA to ethanol. The resulting strain produced ethanol up to 170 mg/L when cultivated in minimal media supplemented with 5 g/L of acetate as a sole carbon source. Growth and ethanol production were optimized by adjusting nitrogen source (NH4Cl) content and repetitive feeding of acetate into the bacterial culture, by which the ethanol production was reached to approximately 350 mg/L for 84 h.  相似文献   

11.
The metabolic fate of acetate, produced during taurine catabolism in Pseudomonas aeruginosa TAU-5, appear to involve the glyoxylate cycle. Organisms grown on taurine have significantly higher levels of malate synthetase and isocitrate lyase than cells grown on nutrient broth, but were comparable to the levels found in acetate-grown organisms. Itaconate, an isocitrate lyase inhibitor, produced a prolonged lag phase and reduced the growth rate of organisms when it was present in the taurine or acetate growth medium. Ethylmethanesulfonate treatment of TAU-5 yielded mutant strains unable to grow on taurine or acetate as sole carbon sources, due to a lack of either malate synthetase or isocitrate lyase. Spontaneous revertants derived from these mutant strains regained the missing enzyme activity and the ability to grow on taurine or acetate.  相似文献   

12.
Acetyl coenzyme A (acetyl-CoA) is the central intermediate of the pathways required to metabolize nonfermentable carbon sources. Three such pathways, i.e., gluconeogenesis, the glyoxylate cycle, and β-oxidation, are required for full virulence in the fungal pathogen Candida albicans. These processes are compartmentalized in the cytosol, mitochondria, and peroxosomes, necessitating transport of intermediates across intracellular membranes. Acetyl-CoA is trafficked in the form of acetate by the carnitine shuttle, and we hypothesized that the enzymes that convert acetyl-CoA to/from acetate, i.e., acetyl-CoA hydrolase (ACH1) and acetyl-CoA synthetase (ACS1 and ACS2), would regulate alternative carbon utilization and virulence. We show that C. albicans strains depleted for ACS2 are unviable in the presence of most carbon sources, including glucose, acetate, and ethanol; these strains metabolize only fatty acids and glycerol, a substantially more severe phenotype than that of Saccharomyces cerevisiae acs2 mutants. In contrast, deletion of ACS1 confers no phenotype, though it is highly induced in the presence of fatty acids, perhaps explaining why acs2 mutants can utilize fatty acids. Strains lacking ACH1 have a mild growth defect on some carbon sources but are fully virulent in a mouse model of disseminated candidiasis. Both ACH1 and ACS2 complement mutations in their S. cerevisiae homolog. Together, these results show that acetyl-CoA metabolism and transport are critical for growth of C. albicans on a wide variety of nutrients. Furthermore, the phenotypic differences between mutations in these highly conserved genes in S. cerevisiae and C. albicans support recent findings that significant functional divergence exists even in fundamental metabolic pathways between these related yeasts.  相似文献   

13.
Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.  相似文献   

14.
Ethanol metabolism in Acinetobacter sp. is limited by the rate of acetate assimilation in a reaction catalyzed by acetyl-CoA synthetase (EC 6.2.1.1). Effects of ions (sodium, potassium, and magnesium), byproducts of ethanol and acetaldehyde oxidation (NADH and NADPH), and pantothenic acid on this enzyme have been studied (sodium, NADH, and NADPH inhibit acetyl-CoA synthetase; pantothenic acid, potassium, and magnesium act as the enzyme activators). Conditions of culturing were developed, under which ethanol, acetaldehyde, and acetate in Acinetobacter cells were oxidized at the same rates, producing a threefold increase in the activity of acetyl-CoA synthetase in the cell-free extract. The results of studies of acetyl-CoA synthetase regulation in a mutant strain of Acinetobacter sp., which is incapable of forming exopolysaccharides, provide a basis for refining the technology of ethapolan production, involving the use of C2 substrates.  相似文献   

15.
16.
Acetyl-CoA hydrolase (Ach1p), catalyzing the hydrolysis of acetyl-CoA, is presumably involved in regulating intracellular acetyl-CoA or CoASH pools; however, its intracellular functions and distribution remain to be established. Using site-directed mutagenesis analysis, we demonstrated that the enzymatic activity of Ach1p is dependent upon its putative acetyl-CoA binding sites. The ach1 mutant causes a growth defect in acetate but not in other non-fermentable carbon sources, suggesting that Ach1p is not involved in mitochondrial biogenesis. Overexpression of Ach1p, but not constructs containing acetyl-CoA binding site mutations, in ach1-1 complemented the defect of acetate utilization. By subcellular fractionation, most of the Ach1p in yeast was distributed with mitochondria and little Ach1p in the cytoplasm. By immunofluorescence microscopy, we show that Ach1p and acetyl-CoA binding site-mutated constructs, but not its N-terminal deleted construct, are localized in mitochondria. Moreover, the onset of pseudohyphal development in homozygote ach1-1 diploids was abolished. We infer that Ach1p may be involved in a novel acetyl-CoA biogenesis and/or acetate utilization in mitochondria and thereby indirectly affect pseudohyphal development in yeast.  相似文献   

17.
The molecular mechanisms of cellular long-chain fatty acid assimilation and its regulation remain unclear. In an attempt to identify essential mediators of these processes, we have isolated mutant strains of the yeast Saccharomyces cerevisiae unable to utilize oleic acid as sole carbon source, while retaining the ability to utilize acetate. These strains are then subjected to several secondary screening assays to identify mutants of interest. Here we describe a mutant (denoted fat21) that, despite a temperature-sensitive inability to utilize oleic acid as sole carbon source, displays no general defect in oleic acid uptake or incorporation of oleic acid into glycerolipids. Oxidation of acetate after growth in acetate medium is increased similarly in the mutant and parent strains. Oleic acid beta-oxidation in acetate grown cells is also comparable between strains. Induction of oleic acid oxidation following exposure to oleic acid is, however, defective in the fat21 mutant. The fat21 mutant allele displays conditional synthetic lethality in combination with a null allele of the OLE1 gene, which encodes Delta9-desaturase and is required for proper mitochondrial segregation. Clones capable of complementing the fat21 defect contained the RML2 gene, encoding a yeast mitochondria ribosomal protein. Segregation analysis and gene replacement experiments demonstrate that RML2 is the gene defective in the fat21 mutant. These observations of a defect in a mitochondrial protein differentially affecting the adaptation to oleic acid and acetate as carbon sources suggest that the phenotype of fat21 is associated with a novel pathway of mitochondrial-nuclear-peroxisomal communication.  相似文献   

18.
19.
The dicarboxylate carrier (DIC) is an integral membrane protein that catalyses a dicarboxylate-phosphate exchange across the inner mitochondrial membrane. We generated a yeast mutant lacking the gene for the DIC. The deletion mutant failed to grow on acetate or ethanol as sole carbon source but was viable on glucose, galactose, pyruvate, lactate and glycerol. The growth on ethanol or acetate was largely restored by the addition of low concentrations of aspartate, glutamate, fumarate, citrate, oxoglutarate, oxaloacetate and glucose, but not of succinate, leucine and lysine. The expression of the DIC gene in wild-type yeast was repressed in media containing ethanol or acetate with or without glycerol. These results indicate that the primary function of DIC is to transport cytoplasmic dicarboxylates into the mitochondrial matrix rather than to direct carbon flux to gluconeogenesis by exporting malate from the mitochondria. The delta DIC mutant may serve as a convenient host for overexpression of DIC and for the demonstration of its correct targeting and assembly.  相似文献   

20.
In Pseudomonas AM1, conversion of 3-hydroxybutyrate to acetyl-CoA is mediated by an inducible 3-hydroxybutyrate dehydrogenase, an acetoacetate: succinate coenzyme A transferase (specific for succinyl-CoA) and an inducible beta-ketothiolase. Ethanol is oxidized to acetate by the same enzymes as are involved in methanol oxidation to formate. An inducible acetyl-CoA synthetase has been partially purified and characterized; it is essential for growth only on ethanol, malonate and acetate plus glyoxylate, as shown by the growth characteristics of a mutant (ICT54) lacking this enzyme. Free acetate is not involved in the assimilation of acetyl-CoA, and hydroxypyruvate reductase is not involved in the oxidation of acetyl-CoA to glyoxylate during growth on 3-hydroxybutyrate. A mutant (ICT51), lacking 'malate synthase' activity has been isolated and its characteristics indicate that this activity is normally essential for growth, of Pseudomonas AM1 on ethanol, malonate and 3-hydroxybutyrate, but not for growth on other substrates such as pyruvate, succinate and C1 compounds. The growth properties of a revertant (ICT51R) and of a mutant lacking malyl-CoA lyase (PCT57) indicate that an alternative route must exist for assimilation of compounds metabolized exclusively by way of acetyl-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号