首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli, mutations conferring rifampicin (Rif) resistance map to the rpoB gene, which encodes the 1342-amino acid subunit of RNA polymerase. Almost all sequenced RifR mutations occur within the Rif region, encompassing rpoB codons 500–575. A strong RifR mutation lying outside the Rif region, which changed Val146 to Phe was previously reported, but was not recovered in subsequent studies. Here, we used site-directed mutagenesis followed by selection on Rif to search for RifR mutations in the evolutionarily conserved segment of rpoB around codon 146. Strong RifR mutations were obtained when Val146 was mutated, and several weak RifR mutations were also isolated near position 146. The results define a new, N-terminal cluster of RifR mutations, in addition to the classical central Rif region.  相似文献   

2.
The rpoB gene encoding for β subunit of RNA polymerase is a target of mutations leading to rifampicin resistant (Rifr) phenotype of bacteria. Here we have characterized rpoB/Rifr system in Pseudomonas aeruginosa and Pseudomonas putida as a test system for studying mutational processes. We found that in addition to the appearance of large colonies which were clearly visible on Rif selective plates already after 24 h of plating, small colonies grew up on these plates for 48 h. The time-dependent appearance of the mutant colonies onto selective plates was caused by different levels of Rif resistance of the mutants. The Rifr clusters of the rpoB gene were sequenced and analyzed for 360 mutants of P. aeruginosa and for 167 mutants of P. putida. The spectrum of Rifr mutations characterized for P. aeruginosa grown at 37 °C and that characterized for P. putida grown at 30 °C were dissimilar but the differences almost disappeared when the mutants of both strain were isolated at the same temperature, at 30 °C. The strong Rifr phenotype of P. aeruginosa and P. putida was accompanied only with substitutions of these residues which belong to the putative Rif-binding pocket. Approximately 70% of P. aeruginosa mutants, which were isolated at 37 °C and expressed weak Rifr phenotype, contained base substitutions in the N-terminal cluster of the rpoB gene. The differences in the spectra of mutations at 30 °C and 37 °C can be explained by temperature-sensitive growth of several mutants in the presence of rifampicin. Thus, our results imply that both the temperature for the growth of bacteria and the time for isolation of Rifr mutants from selective plates are critical when the rpoB/Rifr test system is employed for comparative studies of mutagenic processes in Pseudomonas species which are conventionally cultivated at different temperatures.  相似文献   

3.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular parasitic bacterium that grows directly within the cytoplasm of the eucaryotic host cell. The absence of techniques for genetic manipulation hampers the study of this organism’s unique biology and pathogenic mechanisms. To establish the feasibility of genetic manipulation in this organism, we identified a specific mutation in the rickettsial rpoB gene that confers resistance to rifampin and used it to demonstrate allelic exchange in R. prowazekii. Comparison of the rpoB sequences from the rifampin-sensitive (Rifs) Madrid E strain and a rifampin-resistant (Rifr) mutant identified a single point mutation that results in an arginine-to-lysine change at position 546 of the R. prowazekii RNA polymerase β subunit. A plasmid containing this mutation and two additional silent mutations created in codons flanking the Lys-546 codon was introduced into the Rifs Madrid E strain of R. prowazekii by electroporation, and in the presence of rifampin, resistant rickettsiae were selected. Transformation, via homologous recombination, was demonstrated by DNA sequencing of PCR products containing the three mutations in the Rifr region of rickettsial rpoB. This is the first successful demonstration of genetic transformation of Rickettsia prowazekii and represents the initial step in the establishment of a genetic system in this obligate intracellular pathogen.  相似文献   

4.
5.
6.
It has been found that the level of methyl methanesulfonate (MMS)-induced mutation in Escherichia coli is dependent on the level of UmuD(D′)C proteins. The frequency of argE(ochre)→Arg+ mutations (which occur predominantly by AT→TA transversions) and RifS→RifR mutations is much higher when UmuDC or UmuD'C are overproduced in the cell. When MMS-treated bacteria were starved for progressively longer times and hence the expression of mutations delayed, the level of mutations observed progressively declined. This same treatment had no effect on the degree of SOS induction. Examination of plasmid DNAs, isolated from MMS-treated cells, for their sensitivity to the specific endonucleases Fpg and Nth revealed that MMS causes formation of abasic sites, which are repaired during cell starvation. It is assumed that, in non-dividing cells, apurinic sites are mostly repaired by RecA-mediated recombinational repair. This pathway, which is error-free, is compared with the processing pathway in metabolically active cells, where translesion synthesis by the UmuD′2C-RecA-DNA polymerase III holoenzyme complex occurs; this latter pathway is error-prone.  相似文献   

7.
Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rifr and the gyrB gene leading to Nalr and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation.  相似文献   

8.
Working with a Streptomyces albus strain that had previously been bred to produce industrial amounts (10 mg/ml) of salinomycin, we demonstrated the efficacy of introducing drug resistance-producing mutations for further strain improvement. Mutants with enhanced salinomycin production were detected at a high incidence (7 to 12%) among spontaneous isolates resistant to streptomycin (Strr), gentamicin, or rifampin (Rifr). Finally, we successfully demonstrated improvement of the salinomycin productivity of the industrial strain by 2.3-fold by introducing a triple mutation. The Strr mutant was shown to have a point mutation within the rpsL gene (encoding ribosomal protein S12). Likewise, the Rifr mutant possessed a mutation in the rpoB gene (encoding the RNA polymerase β subunit). Increased productivity of salinomycin in the Strr mutant (containing the K88R mutation in the S12 protein) may be a result of an aberrant protein synthesis mechanism. This aberration may manifest itself as enhanced translation activity in stationary-phase cells, as we have observed with the poly(U)-directed cell-free translation system. The K88R mutant ribosome was characterized by increased 70S complex stability in low Mg2+ concentrations. We conclude that this aberrant protein synthesis ability in the Strr mutant, which is a result of increased stability of the 70S complex, is responsible for the remarkable salinomycin production enhancement obtained.  相似文献   

9.
10.

Background

Mutations in a small region of the rpoB gene are responsible for most rifamycin resistance in Mycobacterium tuberculosis. In this study we have sequentially generated resistant strains to first rifampicin and then rifabutin. Portions of the rpoB gene were sequenced from 131 randomly selected mutants. Second round selection resulted in a changed frequency of specific mutations.

Methods

Mycobacterium tuberculosis (strain Mtb72) rifamycin resistant mutants were selected in vitro with either rifampicin or rifabutin. One mutant R190 (rpoB S522L) selected with rifampicin had a rifampicin MIC of 32 μg/ml but remained sensitive to rifabutin (MIC<0.8 μg/ml). This mutant was subjected to a second round of selection with rifabutin.

Results

All 105 first round resistant mutants derived from the parent strain (Mtb72) screened acquired mutations within the 81 bp rpoB hotspot. When the rifampicin resistant but rifabutin sensitive S522L mutant was subjected to a second round of selection, single additional rpoB mutations were identified in 24 (92%) of 26 second round mutants studied, but 14 (54%) of these strains contained mutations outside the 81 bp hotspot (codons 144, 146, 148, 505). Additionally, spontaneous rifabutin resistant mutants were produced at >10 times the frequency by the S522L mutant than the parent strain.

Conclusion

First round selection of mutation S522L with rifampicin increased the frequency and changed the spectrum of mutations identified after selection with rifabutin.  相似文献   

11.

Background

Newer molecular diagnostics have brought paradigm shift in early diagnosis of tuberculosis [TB]. WHO recommended use of GeneXpert MTB/RIF [Xpert] for Extra-pulmonary [EP] TB; critics have since questioned its efficiency.

Methods

The present study was designed to assess the performance of GeneXpert in 761 extra-pulmonary and 384 pulmonary specimens from patients clinically suspected of TB and compare with Phenotypic, Genotypic and Composite reference standards [CRS].

Results

Comparison of GeneXpert results to CRS, demonstrated sensitivity of 100% and 90.68%, specificity of 100% and 99.62% for pulmonary and extra-pulmonary samples. On comparison with culture, sensitivity for Rifampicin [Rif] resistance detection was 87.5% and 81.82% respectively, while specificity was 100% for both pulmonary and extra-pulmonary TB. On comparison to sequencing of rpoB gene [Rif resistance determining region, RRDR], sensitivity was respectively 93.33% and 90% while specificity was 100% in both pulmonary and extra-pulmonary TB. GeneXpert assay missed 533CCG mutation in one sputum and dual mutation [517 & 519] in one pus sample, detected by sequencing. Sequencing picked dual mutation [529, 530] in a sputum sample sensitive to Rif, demonstrating, not all RRDR mutations lead to resistance.

Conclusions

Current study reports observations in a patient care setting in a high burden region, from a large collection of pulmonary and extra-pulmonary samples and puts to rest questions regarding sensitivity, specificity, detection of infrequent mutations and mutations responsible for low-level Rif resistance by GeneXpert. Improvements in the assay could offer further improvement in sensitivity of detection in different patient samples; nevertheless it may be difficult to improve sensitivity of Rif resistance detection if only one gene is targeted. Assay specificity was high both for TB detection and Rif resistance detection. Despite a few misses, the assay offers major boost to early diagnosis of TB and MDR-TB, in difficult to diagnose pauci-bacillary TB.  相似文献   

12.
13.
An intermediate vector pSSJ1 was constructed by cloning a hph gene and a gus gene with catalase intron in pGV1500. pSSJ1 was cointegrated into a disarmed receptor Ti plasmid pGV2260 harboured in Agrobacterium tumefaciens strain C58C1RifR. The resulting A. tumefaciens strain C58C1RifR (pGV2260::pSSJ1) stably transformed Oryza sativa L. cv Pusa Basmati 1 scutellum-derived calli at 26% frequency. Introduction of the plasmid pSSJ3 (3′virB, virG and virC of pTiB0542) into A. tumefaciens C58C1RifR (pGV2260::pSSJ1) resulted in the elevation of acetosyringone-induced T -strand accumulation. Rice transformation efficiency of the cointegrate plasmid pGV2260::pSSJ1 increased from 26% to 33% in the presence of pSSJ3 and from 26% to 35% in the presence of pToK47 (complete virB, virG and virC). T-DNA integration in To plants was confirmed by Southern hybridization analysis. Inheritance analysis of the T0 plants with single-copy T-DNA insertions revealed segregation of hygromycin resistance in 3:1 ratio. The feasibility of rice transformation with a cointegrate Ti plasmid vector is clearly established.  相似文献   

14.
In this study, we infer the phylogenetic relationships within commercial shrimp using sequence data from a novel mitochondrial marker consisting of an approximately 530-bp region of the 16S ribosomal RNA (rRNA)/transfer RNA (tRNA)Val genes compared with two other mitochondrial genes: 16S rRNA and cytochrome c oxidase I (COI). All three mitochondrial markers were considerably AT rich, exhibiting values up to 78.2% for the species Penaeus monodon in the 16S rRNA/tRNAVal genes, notably higher than the average among other Malacostracan mitochondrial genomes. Unlike the 16S rRNA and COI genes, the 16S rRNA/tRNAVal marker evidenced that Parapenaeus is more closely related to Metapenaeus than to Solenocera, a result that seems to be more in agreement with the taxonomic status of these genera. To our knowledge, our study using the 16S rRNA/tRNAVal gene as a marker for phylogenetic analysis offers the first genetic evidence to confirm that Pleoticus muelleri and Solenocera agassizi constitute a separate group and that they are more related to each other than to genera belonging to the family Penaeidae. The 16S rRNA/tRNAVal region was also found to contain more variable sites (56%) than the other two regions studied (33.4% for the 16S rRNA region and 42.7% for the COI region). The presence of more variable sites in the 16S rRNA/tRNAVal marker allowed the interspecific differentiation of all 19 species examined. This is especially useful at the commercial level for the identification of a large number of shrimp species, particularly when the lack of morphological characteristics prevents their differentiation.  相似文献   

15.
    
Summary A number of spontaneous rifampicin-resistant (Rifr) mutants were isolated from a strain of E. coli having a deletion in the lac proA proB region of the chromosome. The stability of a F lac proA proB episome in these mutants was determined by their sensitivity to acridine orange curing and the frequency of spontaneous loss of episomes. The Rifr mutants can be divided into three classes based on their ability to maintain the F lac pro episome. Class I mutants (24% of the total Rifr mutants) showed high degree of spontaneous episome loss and high sensitivity to acridine orange curing. Class II mutants (55% of the total Rifr mutants), like the parent strains, showed intermediate sensitivity to acridine orange curing. Class III mutants (21% of the total Rifr mutants) showed high resistance to acridine orange curing and low frequency of spontaneous episome loss. Three-fourths of the Class II mutants were found to be Hfr as shown by their lack of the F lac pro DNA band on agarose gel together with their ability to mobilize chromosomal markers in mating. Representative Rifr mutants from each class were selected and the Rifr mutations were mapped within the rpoB gene of the operon by P1 transduction. These results indicate that RNA polymerase, or the subunit of RNA polymerase, plays an important role in maintaining the F lac pro episome and in the integration of the F lac pro episome where no extensive sequence homology is involved.  相似文献   

16.
MG1655 of Escherichia coli K-12 is frequently used in metabolic engineering as the wild-type strain. However, its two mutations, ilvG and rph-1 provide a negative effect on culture growth. The “polar effect” of rph-1 decreases the level of pyrE expression, causing partial auxotrophy for pyrimidines. Mutation ilvG leading to the appearance of ValS phenotype causes retardation of cell growth rate on media containing amino acids. In this work, the substitution of two loci in the genome of MG1655 with the recovery of the wild-type phenotype was accomplished. Gene rph wt from the chromosome of E. coli TG1 was marked via Red-dependent integration of DNA fragment carrying λattL-CmRattR and transduced with phage P1 into MG1655; later, the CmR marker was removed with the use of λXis/Int recombinase. Parallel to this procedure, a spontaneous ValR mutant of E. coli MG1655 yielding colonies of maximal size on M9 medium with glucose in the presence of L-Val (50 μg/ml) was isolated. It was shown that a nucleotide deletion in the isolated ValR strain had been generated in the region of the identified ilvG mutation, which led to the recovery of the reading frame and active protein synthesis. This mutation named ilvG-15, which is the only reason for the ValR phenotype in the obtained strain, was transferred to MG1655-rph wt using cotransduction, by analogy to the transfer of rph wt. Evaluation of rates of aerobically growing cells (μ, hour-1) on M9 medium with glucose produced the following values: 0.56, 0.69, and 0.73 for strains MG1655,MG1655-rph wt, and MG1655-(rph wt, ilvG-15), respectively.  相似文献   

17.
18.
19.
We developed a novel approach for improving the production of antibiotic from Streptomyces coelicolor A3(2) by inducing combined drug-resistant mutations. Mutants with enhanced (1.6- to 3-fold-higher) actinorhodin production were detected at a high frequency (5 to 10%) among isolates resistant to streptomycin (Strr), gentamicin (Genr), or rifampin (Rifr), which developed spontaneously on agar plates which contained one of the three drugs. Construction of double mutants (str gen and str rif) by introducing gentamicin or rifampin resistance into an str mutant resulted in further increased (1.7- to 2.5-fold-higher) actinorhodin productivity. Likewise, triple mutants (str gen rif) thus constructed were found to have an even greater ability for producing the antibiotic, eventually generating a mutant able to produce 48 times more actinorhodin than the wild-type strain. Analysis of str mutants revealed that a point mutation occurred within the rpsL gene, which encodes the ribosomal protein S12. rif mutants were found to have a point mutation in the rpoB gene, which encodes the β-subunit of RNA polymerase. Mutation points in gen mutants still remain unknown. These single, double, and triple mutants displayed in hierarchical order a remarkable increase in the production of ActII-ORF4, a pathway-specific regulatory protein, as determined by Western blotting analysis. This reflects the same hierarchical order observed for the increase in actinorhodin production. The superior ability of the triple mutants was demonstrated by physiological analyses under various cultural conditions. We conclude that by inducing combined drug-resistant mutations we can continuously increase the production of antibiotic in a stepwise manner. This new breeding approach could be especially effective for initially improving the production of antibiotics from wild-type strains.  相似文献   

20.
Both the probability of a mutation occurring and the ability of the mutant to persist will influence the distribution of mutants that arise in a population. We studied the interaction of these factors for the in vitro selection of rifampicin (RIF)-resistant mutants of Mycobacterium tuberculosis. We characterised two series of spontaneous RIF-resistant in vitro mutants from isoniazid (INH)-sensitive and -resistant laboratory strains and clinical isolates, representing various M. tuberculosis genotypes. The first series were selected from multiple parallel 1 ml cultures and the second from single 10 ml cultures. RIF-resistant mutants were screened by Multiplex Ligation-dependent Probe Amplification (MLPA) or by sequencing the rpoB gene. For all strains the mutation rate for RIF resistance was determined with a fluctuation assay. The most striking observation was a shift towards rpoB-S531L (TCG→TTG) mutations in a panel of laboratory-generated INH-resistant mutants selected from the 10-ml cultures (p<0.001). All tested strains showed similar mutation rates (1.33×10−8 to 2.49×10−7) except one of the laboratory-generated INH mutants with a mutation rate measured at 5.71×10−7, more than 10 times higher than that of the INH susceptible parental strain (5.46–7.44×10−8). No significant, systematic difference in the spectrum of rpoB-mutations between strains of different genotypes was observed. The dramatic shift towards rpoB-S531L in our INH-resistant laboratory mutants suggests that the relative fitness of resistant mutants can dramatically impact the distribution of (subsequent) mutations that accumulate in a M. tuberculosis population, at least in vitro. We conclude that, against specific genetic backgrounds, certain resistance mutations are particularly likely to spread. Molecular screening for these (combinations of) mutations in clinical isolates could rapidly identify these particular pathogenic strains. We therefore recommend that isolates are screened for the distribution of resistance mutations, especially in regions that are highly endemic for (multi)drug resistant tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号