首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum encodes a race-specific peptide elicitor that induces the hypersensitive response in tomato plants carrying the complementary resistance gene Cf9. The avr9 gene is not expressed under optimal growth conditions in vitro, but is highly expressed when the fungus grows inside the tomato leaf. In this paper we present evidence for the induction of avr9 gene expression in C. fulvum grown in vitro under conditions of nitrogen limitation. Only growth medium with very low amounts of nitrogen (nitrate, ammonium, glutamate or glutamine) induced the expression of avr9. Limitation of other macronutrients or the addition of plant factors did not induce the expression of avr9. The induced expression of avr9 is possibly mediated by a positive-acting nitrogen regulatory protein, homologous to the Neurospora crassa NIT2 protein, which induces the expression of many genes under conditions of nitrogen limitation. The avr9 promoter contains several putative NIT2 binding sites. The expression of avr9 during the infection process was explored cytologically using transformants of C. fulvum carrying an avr9 promoter--glucuronidase reporter gene fusion. The possibility that expression of avr9 in C. fulvum growing in planta is caused by nitrogen limitation in the apoplast of the tomato leaf is discussed.  相似文献   

2.
3.
The interaction between the fungal pathogen Cladosporium fulvum and tomato is supposed to have a gene-for-gene basis. Races of C. fulvum which have 'overcome' the resistance gene Cf9 of tomato, lack the avirulence gene avr9 which encodes a race-specific peptide elicitor. Races avirulent on tomato genotypes carrying the resistance gene Cf9 produce the race-specific peptide elicitor, which induces the hypersensitive response (HR) on those genotypes. The causal relationship between the presence of a functional avr9 gene and avirulence on tomato genotype Cf9 was demonstrated by cloning of the avr9 gene and subsequent transformation of C. fulvum. A race virulent on tomato genotype Cf9 was shown to become avirulent by transformation with the cloned avr9 gene. These results clearly demonstrate that the avr9 gene is responsible for cultivar specificity on tomato genotype Cf9 and fully support the gene-for-gene hypothesis. The avr9 gene is the first fungal avirulence gene to be cloned.  相似文献   

4.
Cladosporium fulvum is a biotrophic fungal pathogen that causes leaf mould of tomato. Analysis of its genome suggested a high potential for production of secondary metabolites (SM), which might be harmful to plants and animals. Here, we have analysed in detail the predicted SM gene clusters of C. fulvum employing phylogenetic and comparative genomic approaches. Expression of the SM core genes was measured by RT-qrtPCR and produced SMs were determined by LC-MS and NMR analyses. The genome of C. fulvum contains six gene clusters that are conserved in other fungal species, which have undergone rearrangements and gene losses associated with the presence of transposable elements. Although being a biotroph, C. fulvum has the potential to produce elsinochrome and cercosporin toxins. However, the corresponding core genes are not expressed during infection of tomato. Only two core genes, PKS6 and NPS9, show high expression in planta, but both are significantly down regulated during colonization of the mesophyll tissue. In vitro SM profiling detected only one major compound that was identified as cladofulvin. PKS6 is likely involved in the production of this pigment because it is the only core gene significantly expressed under these conditions. Cladofulvin does not cause necrosis on Solanaceae plants and does not show any antimicrobial activity. In contrast to other biotrophic fungi that have a reduced SM production capacity, our studies on C. fulvum suggest that down-regulation of SM biosynthetic pathways might represent another mechanism associated with a biotrophic lifestyle.  相似文献   

5.
Intercellular fluids of compatible race-cultivar interactions of Cladosporium fulvum and tomato contain specific elicitors of necrosis. These elicitors which are of fungal origin induce chlorosis and necrosis in resistant but not in susceptible plants. With the tomato cultivar Sonatine (carrying resistance gene Cf9, resistant to the fungal races 0, 4, 5, 2, 2.4, and 2.4.5 but susceptible to race 2.4.5.9) as the test plant for assaying necrosis-inducing activity, we isolated and partially characterized an elicitor of necrosis on this cultivar. The elicitor bound to CM-Sephadex but not to DEAE-Sephadex; it was stable to heat (10 minutes at 100°C), HCl (0.01 normal), NaOH (0.01 normal), and NaIO4 (0.02 molar), sensitive to pronase and protease (from Bacillus polymyxa) but not to other proteases such as α-chymotrypsin and trypsin. After electrophoresis of partially purified elicitor preparations under low pH conditions, the necrosis-inducing activity was association with a peptide with an apparent molecular weight of 5500. Races 0, 4, 5, 2.4, and 2.4.5 but not race 2.4.5.9 produced this elicitor in high yields. The elicitor is probably a product of avirulence gene A9 which is present in all races except in race 2.4.5.9 and induces necrosis in cultivars carrying resistance gene Cf9.  相似文献   

6.
Three constructs were used to study the expression of the avirulence gene Avr9 from the fungal tomato pathogen Cladosporium fulvum in plants. They include pAVIR1, pAVIR2 and pAVIR21, encoding the wild-type AVR9 protein and two hybrid AVR9 proteins containing the signal sequences of the pathogenesis-related proteins PR-S and PR-1a, respectively. Transgenic tobacco plants obtained with the three constructs showed a normal phenotype and produced AVR9 elicitor with the same specific necrosis-inducing activity as the wild-type AVR9 elicitor produced in planta by isolates of C. fulvum containing the Avr9 gene. Level of expression was not correlated with number of T-DNA integrations, but plants homozygous for the Avr9 gene produced more elicitor protein than heterozygous plants. The amino acid sequence of the processed AVR9 peptide present in apoplastic fluid (AF) of pAVIR1 transformed plants producing the wild-type AVR9 elicitor was identical to that of the wild-type AVR9 peptide isolated from C. fulvum-infected tomato leaves. Transgenic Cf0 genotypes of tomato, obtained by transformation with construct pAVIR21, showed a normal phenotype. However, transgenic F1 plants expressing the Avr9 gene, obtained from crossing transgenic Cf0 genotypes with wild-type Cf9 genotypes, showed delayed growth, necrosis and complete plant death indicating that the AVR9 peptide produced in plants carrying the Cf9 gene is deleterious. The necrotic defence response observed in Cf9 genotypes expressing the Avr9 gene support the potential to apply avirulence genes in molecular resistance breeding.  相似文献   

7.
Host genotype specificity in interactions between biotrophic fungal pathogens and plants in most cases complies with the gene-for-gene model. Success or failure of infection is determined by absence or presence of complementary genes, avirulence and resistance genes, in the pathogen and the host plant, respectively. Resistance, expressed by the induction of a hypersensitive response followed by other defence responses in the host, is envisaged to be based on recognition of the pathogen, mediated through direct interaction between products of avirulence genes of the pathogen (the so-called race-specific elicitors) and receptors in the host plant, the putative products of resistance genes. The interaction between the biothrophic fungusCladosporium fulvum and its only host tomato is a model system to study fungus-plant gene-for-gene relationships. Here we report on isolation, characterization and biological function of putative pathogenicity factors ECP1 and ECP2 and the race-specific elicitors AVR4 and AVR9 ofC. fulvum and cloning and regulation of their encoding genes. Disruption ofecp1 andecp2 genes has no clear effect on pathogenicity ofC. fulvum. Disruption of theavr9 gene, which codes for the race-specific 28 amino acid AVR9 elicitor, in wild type avirulent races, leads to virulence on tomato genotypes carrying the complementary resistance geneCf9. The avirulence geneavr4 encodes a 105 amino acid race-specific elicitor. A single basepair change in the avirulence geneavr4 leads to virulence on tomato genotypes carrying theCf4 resistance gene.  相似文献   

8.
The AVR9 elicitor from the fungal pathogen Cladosporium fulvum induces defense-related responses, including cell death, specifically in tomato (Lycopersicon esculentum Mill.) plants that carry the Cf-9 resistance gene. To study biochemical mechanisms of resistance in detail, suspension cultures of tomato cells that carry the Cf-9 resistance gene were initiated. Treatment of cells with various elicitors, except AVR9, induced an oxidative burst, ion fluxes, and expression of defense-related genes. Agrobacterium tumefaciens-mediated transformation of Cf9 tomato leaf discs with Avr9-containing constructs resulted efficiently in transgenic callus formation. Although transgenic callus tissue showed normal regeneration capacity, transgenic plants expressing both the Cf-9 and the Avr9 genes were never obtained. Transgenic F1 seedlings that were generated from crosses between tomato plants expressing the Avr9 gene and wild-type Cf9 plants died within a few weeks. However, callus cultures that were initiated on cotyledons from these seedlings could be maintained for at least 3 months and developed similarly to callus cultures that contained only the Cf-9 or the Avr9 gene. It is concluded, therefore, that induction of defense responses in Cf9 tomato cells by the AVR9 elicitor is developmentally regulated and is absent in callus tissue and cell-suspension cultures, which consists of undifferentiated cells. These results are significant for the use of suspension-cultured cells to investigate signal transduction cascades.  相似文献   

9.
One of the most devastating fungal diseases of soybean in the southern USA is Cercospora leaf blight (CLB), which is caused mainly by Cercospora cf. flagellaris. Recent studies found that the fungal effector AVR4, originally identified in Cladosporium fulvum as a chitin-binding protein, is highly conserved among other Cercospora species. We wanted to determine whether it is present in C. cf. flagellaris and, if so, whether it plays a role in the pathogen infection of soybean. We cloned the Avr4 gene and created C. cf. flagellarisavr4 mutants, which produced little cercosporin and significantly reduced expression of cercosporin biosynthesis genes. The ∆avr4 mutants were also more sensitive to chitinase and showed reduced virulence on soybean compared to the wild-type. The observed reduced virulence of C. cf. flagellarisavr4 mutants on detached soybean leaves is likely due to reduced cercosporin biosynthesis. The phenotypes of reduced cercosporin production and cercosporin pathway gene expression, similar to those of the ∆avr4 mutants, were reproduced when wild-type C. cf. flagellaris was treated with double-stranded RNA targeting Avr4 in vitro. These two independent approaches demonstrated for the first time the direct involvement of AVR4 in the biosynthesis of cercosporin.  相似文献   

10.
The race-specific peptide elicitor AVR9 of the fungus Cladosporium fulvum induces a hypersensitive response only in tomato (Lycopersicon esculentum) plants carrying the complementary resistance gene Cf-9 (MoneyMaker-Cf9). A binding site for AVR9 is present on the plasma membranes of both resistant and susceptible tomato genotypes. We used mutant AVR9 peptides to determine the relationship between elicitor activity of these peptides and their affinity to the binding site in the membranes of tomato. Mutant AVR9 peptides were purified from tobacco (Nicotiana clevelandii) inoculated with recombinant potato virus X expressing the corresponding avirulence gene Avr9. In addition, several AVR9 peptides were synthesized chemically. Physicochemical techniques revealed that the peptides were correctly folded. Most mutant AVR9 peptides purified from potato virus X::Avr9-infected tobacco contain a single N-acetylglucosamine. These glycosylated AVR9 peptides showed a lower affinity to the binding site than the nonglycosylated AVR9 peptides, whereas their necrosis-inducing activity was hardly changed. For both the nonglycosylated and the glycosylated mutant AVR9 peptides, a positive correlation between their affinity to the membrane-localized binding site and their necrosis-inducing activity in MoneyMaker-Cf9 tomato was found. The perception of AVR9 in resistant and susceptible plants is discussed.  相似文献   

11.
The avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum encodes a race-specific peptide elicitor that induces a hypersensitive response in tomato plants carrying the complementary resistance gene Cf9. The avr9 gene is highly expressed when C. fulvum is growing in the plant and the elicitor accumulates in infected leaves as a 28-amino acid (aa) peptide. In C. fulvum grown in vitro, the peptide elicitor is not produced in detectable amounts. To produce significant amounts of the AVR9 elicitor in vitro, the coding and termination sequences of the avr9 gene were fused to the constitutive gpd-promoter (glyceraldehyde 3-phosphate dehydrogenase) of Aspergillus nidulans. Transformants of C. fulvum were obtained that highly expressed the avr9 gene in vitro and produced active AVR9 peptide elicitors. These peptides were partially sequenced from the N terminus and appeared to consist of 32, 33, and 34 aa's, respectively, and are the precursors of the mature 28-aa AVR9 peptide. We demonstrated that plant factors process the 34-aa peptide into the mature 28-aa peptide. We present a model for the processing of AVR9 involving cleavage of a signal peptide during excretion and further maturation by fungal and plant proteases into the stable 28-aa peptide elicitor.  相似文献   

12.
Here we describe the role of the Cladosporium fulvum nitrogen response factor 1 (Nrf1) gene in regulation of the expression of avirulence gene Avr9 and virulence on tomato. The Nrf1 gene, which was isolated by a polymerase chain reaction-based strategy, is predicted to encode a protein of 918 amino acid residues. The protein contains a putative zinc finger DNA-binding domain that shares 98% amino acid identity with the zinc finger of the major nitrogen regulatory proteins AREA and NIT2 of Aspergillus nidulans and Neurospora crassa, respectively. Functional equivalence of Nrf1 to areA was demonstrated by complementation of an A. nidulans areA loss-of-function mutant with Nrf1. Nrf1-deficient transformants of C. fulvum obtained by homologous recombination were unable to utilize nitrate and nitrite as a nitrogen source. In contrast to what was observed in the C. fulvum wild-type, the Avr9 gene was no longer induced under nitrogen-starvation conditions in Nrf1-deficient strains. On susceptible tomato plants, the Nrf1-deficient strains were as virulent as wild-type strains of C. fulvum, although the expression of the Avr9 gene was strongly reduced. In addition, Nrf1-deficient strains were still avirulent on tomato plants containing the functional Cf-9 resistance gene, indicating that in planta, apparently sufficient quantities of stable AVR9 elicitor are produced. Our results suggest that the NRF1 protein is a major regulator of the Avr9 gene.  相似文献   

13.
The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an excellent model to study gene-for-gene interactions and plant disease resistance gene evolution. Most Cf genes were introgressed into cultivated tomato (Solanum lycopersicum) from wild relatives such as S. pimpinellifolium and novel Cf-ECP genes were recently identified in this species. Our objective is to isolate Cf-ECP1, Cf-ECP2, Cf-ECP4 and Cf-ECP5 to increase our understanding of Cf gene evolution, and the molecular basis for recognition specificity in Cf proteins. The map locations of Cf-ECP2 and Cf-ECP5 have been reported previously and we report here that Cf-ECP1 and Cf-ECP4 map to a different locus on the short arm of chromosome 1. The analysis of selected recombinants and allelism tests showed both genes are located at Milky Way together with Cf-9 and Cf-4. Our results emphasise the importance of this locus in generating novel Cf genes for resistance to C. fulvum. Candidate genes for Cf-ECP1 and Cf-ECP4 were also identified by DNA gel blot analysis of bulked segregant pools. In addition, we generated functional cassettes for expression of the C. fulvum ECP1, ECP2, ECP4 and ECP5 proteins using recombinant Potato Virus X, and three ECPs were also expressed in stable transformed plants. Using marker-assisted selection we have also identified recombinants containing Cf-ECP1, Cf-ECP2, Cf-ECP4 or Cf-ECP5 in cis with a linked T-DNA carrying the non-autonomous Zea mays transposon Dissociation. Using these resources it should now be possible to isolate all four Cf-ECPs using transposon tagging, or a candidate gene strategy. Eleni Soumpourou and Michael Iakovidis contributed equally to this work.  相似文献   

14.
15.
In this study, we have constructed and expressed inverted repeat chimeras from the first exons of the six known hydrophobins of the fungus Cladosporium fulvum, the causal agent of tomato leaf mold. We used quantitative PCR to measure specifically the expression levels of the hydrophobins. The targeted genes are silenced to different degrees, but we also detected clear changes in the expression levels of nontargeted genes. This work highlights the difficulties that are likely to be encountered when attempting to silence more than one gene in a multigene family.  相似文献   

16.
The mitochondrial respiratory chain in plants, some protists and many fungi consists of the ATP-coupling cyanide-sensitive cytochrome pathway and the cyanide-resistant alternative respiratory pathway. The alternative pathway is mediated by alternative oxidase (AOX). Although AOX has been proposed to play essential roles in nutrient stress tolerance of plants and protists, the effects of sulfur (S) deprivation, on AOX are largely unknown. The unicellular green alga Chlamydomonas reinhardtii reacts to S limitation conditions with the induced expression of many genes. In this work, we demonstrated that exposure of C. reinhardtii to S deprivation results in the up-regulation of AOX1 expression and an increased AOX1 protein. Furthermore, S-deprived C. reinhardtii cells display the enhanced AOX1 capacity. Moreover, nitrate assimilation regulatory protein (NIT2) is involved in the control of the AOX1 gene expression in the absence of S. Together, the results clearly indicate that AOX1 relates to S limitation stress responses and is regulated in a NIT2-dependent manner, probably together with yet-unknown regulatory factor(s).  相似文献   

17.
Leaf mould disease in tomato is caused by the biotrophic fungus Cladosporium fulvum. An Ac/Ds targeted transposon tagging strategy was used to isolate the gene conferring resistance to race 5 of C. fulvum, a strain expressing the avirulence gene Avr4. An infection assay of 2-week-old seedlings yielded five susceptible mutants, of which two had a Ds element integrated in the same gene at different positions. This gene, member of a gene family, showed high sequence homology to the C. fulvum resistance genes Cf-9 and Cf-2. The gene is predicted to encode an extracellular transmembrane protein containing a divided domain of 25 leucine-rich repeats. Three mutants exhibited a genomic deletion covering most of the Lycopersicon hirsutum introgressed segment, including the Cf-4 locus. Southern blot analysis revealed that this deletion includes the tagged gene and five homologous sequences. To test whether the tagged gene confers resistance to C. fulvum via Avr4 recognition, the Avr4 gene was expressed in planta. Surprisingly, expression of the Avr4 gene still triggered a specific necrotic response in the transposon-tagged plants, indicating that the tagged resistance gene is not, or is not the only gene, involved in Avr4 recognition. Mutants harbouring the genomic deletion did not show this Avr4-specific response. The deleted segment apparently contains, in addition to the tagged gene, one or more other genes, which play a role in the Avr4 responses. The tagged gene is present at the Cf-4 locus, but it does not necessarily recognize Avr4 and is therefore designated Cf-4A.  相似文献   

18.
Leaf mold of tomato is caused by the biotrophic fungus Cladosporium fulvum which complies with the gene-for-gene system. The disease was first reported in Japan in the 1920s and has since been frequently observed. Initially only race 0 isolates were reported, but since the consecutive introduction of resistance genes Cf-2, Cf-4, Cf-5 and Cf-9 new races have evolved. Here we first determined the virulence spectrum of 133 C. fulvum isolates collected from 22 prefectures in Japan, and subsequently sequenced the avirulence (Avr) genes Avr2, Avr4, Avr4E, Avr5 and Avr9 to determine the molecular basis of overcoming Cf genes. Twelve races of C. fulvum with a different virulence spectrum were identified, of which races 9, 2.9, 4.9, 4.5.9 and 4.9.11 occur only in Japan. The Avr genes in many of these races contain unique mutations not observed in races identified elsewhere in the world including (i) frameshift mutations and (ii) transposon insertions in Avr2, (iii) point mutations in Avr4 and Avr4E, and (iv) deletions of Avr4E, Avr5 and Avr9. New races have developed by selection pressure imposed by consecutive introductions of Cf-2, Cf-4, Cf-5 and Cf-9 genes in commercially grown tomato cultivars. Our study shows that molecular variations to adapt to different Cf genes in an isolated C. fulvum population in Japan are novel but overall follow similar patterns as those observed in populations from other parts of the world. Implications for breeding of more durable C. fulvum resistant varieties are discussed.  相似文献   

19.
Aims: The aim of this study was to develop a sensitive real-time polymerase chain reaction (PCR) assay for the rapid detection of Cladosporium fulvum in tomato leaves. Methods and Results: Three PCR primer pairs were designed based on the nucleotide sequences of: (i) the internal transcribed spacer regions of ribosomal RNA; (ii) a microsatellite region amplified by the microsatellite primer M13; and (iii) the β-tubulin gene of C. fulvum. Each primer pair amplified the expected target DNA fragment from geographically diverse isolates of C. fulvum. No PCR products were amplified with these primer pairs from DNA of other fungal species. Among the three pairs of primers, the primer pair CfF1/CfR1 developed based on the microsatellite region was the most sensitive. Using this sensitive primer pair, a real-time PCR assay was developed to detect early infection of C. fulvum in tomato leaves. Significance and Impact of the Study: DNA regions amplified by the microsatellite primer M13 have a high potential for developing highly sensitive species-specific PCR primers for the detection of phytopathogenic fungi. The real-time PCR assay developed in this study is useful in monitoring early infection of C. fulvum, and can help growers make timely decisions on fungicide application.  相似文献   

20.
In higher plants, the expression of the nitrate assimilation pathway is highly regulated. Although the molecular mechanisms involved in this regulation are currently being elucidated, very little is known about the trans-acting factors that allow expression of the nitrate and nitrite reductase genes which code for the first enzymes in the pathway. In the fungus Neurospora crassa, nit-2, the major nitrogen regulatory gene, activates the expression of unlinked structural genes that specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein containing a single zinc finger motif defined by the C-X2-CX17-C-X2-C sequence. This DNA-binding domain recognizes the promoter region of N. crassa nitrogen-related genes and fragments derived from the tomato nia gene promoter. The observed specificity of the binding suggests the existence of a NIT2-like homolog in higher plants. PCR and cross-hybridization techniques were used to isolate, respectively, a partial cDNA from Nicotiana plumbaginifolia and a full-length cDNA from Nicotiana tabacum. These clones encode a NIT2-like protein (named NTL1 for nit-2-like), characterized by a single zinc finger domain, defined by the C-X2-C-X18-C-X2-C amino acids, and associated with a basic region. The amino acid sequence of NTL1 is 60% homologous to the NIT2 sequence in the zinc finger domain. The Ntl1 gene is present as a unique copy in the diploid N. plumbaginifolia species. The characteristics of Ntl1 gene expression are compatible with those of a regulator of the nitrate assimilation pathway, namely weak nitrate inducibility and regulation by light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号