首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Drosophila melanogaster Gad gene maps to region 64A3-5 of chromosome 3L and encodes glutamic acid decarboxylase (GAD), the rate-limiting enzyme for the synthesis of the inhibitory neurotransmitter -aminobutyric acid (GABA). Because this neurotransmitter has been implicated in developmental functions, we have begun to study the role of GABA synthesis during Drosophila embryogenesis. We show that Gad mRNA is expressed in a widespread pattern within the embryonic nervous system. Similarly, GAD-immunoreactive protein is present during embryogenesis. These results prompted us to screen for embryonic lethal mutations that affect GAD activity. The chromosomal region to which Gad maps, however, has not been subjected to an extensive mutational analysis, even though it contains several genes encoding important neurobiological, developmental, or cellular functions. Therefore, we have initially generated both chromosomal rearangements and point mutations that map to the Drosophila 64AB interval. Altogether, a total of 33 rearrangements and putative point mutations were identified within region 64A3-5 to 64B12. Genetic complementation analysis suggests that this cytogenetic interval contains a minimum of 19 essential genes. Within our collection of lethal mutations are several chromosomal rearrangements, two of which are in the vicinity of the Gad locus. One of these rearrangements, Df(3L)C175, is a small deletion that removes the Gad locus and at least two essential genes; the second, T(2;3)F10, is a reciprocal translocation involving the second and third chromosomes with a break within region 64A3-5. Both of these rearrangements are associated with embryonic lethality and decreased GAD enzymatic activity.  相似文献   

2.
Glutamate decarboxylase (l-glutamate 1-carboxylyase, E.C. 4.1.1.15, GAD) is the rate-limiting enzyme for the production of γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrates and invertebrates. We report the identification, isolation and characterization of cDNAs encoding GAD from the parasitic arthropods Ctenocephalides felis (cat flea) and Rhipicephalus microplus (cattle tick). Expression of the parasite GAD genes and the corresponding Drosophila melanogaster (fruit fly) GAD1 as well as the mouse GAD65 and GAD67 genes in Escherichia coli as maltose binding protein fusions resulted in functional enzymes in quantities compatible with the needs of high throughput inhibitor screening (HTS). A novel continuous coupled spectrophotometric assay for GAD activity based on the detection cascade GABA transaminase/succinic semialdehyde dehydrogenase was developed, adapted to HTS, and a corresponding screen was performed with cat flea, cattle tick and fruit fly GAD. Counter-screening of the selected 38 hit substances on mouse GAD65 and GAD67 resulted in the identification of non-specific compounds as well as inhibitors with preferences for arthropod GAD, insect GAD, tick GAD and the two mouse GAD forms. Half of the identified hits most likely belong to known classes of GAD inhibitors, but several substances have not been described previously as GAD inhibitors and may represent lead optimization entry points for the design of arthropod-specific parasiticidal compounds.  相似文献   

3.
Effect of chromosomal rearrangements on the expression of mutations was studied in Drosophila melanogaster regulatory genes. These were facultative dominant lethals and recessive lethals on the X chromosome obtained by the classical Muller-5 method. Chromosomal rearrangements drastically changed the expression of regulatory gene mutations. Rearrangements either caused the lethal effect of mutations or suppressed the already present lethality. The action of rearrangements exhibited the maternal or paternal effect. Irrespective of the presence in the genome of mutations of regulatory genes, a rearrangement acted as a factor decreasing fertility of the organism. The rearrangement effect is identical to the expression of regulatory genes per se. It is concluded that the chromosomal rearrangement affects the examined regulatory genes indirectly through a change in the operation of regulatory genes located within the rearrangement. Thus, rearrangements gain great importance for the definition of the pattern of genome functional activity. Widespread distribution of rearrangements in individual genotypes and their effectivity in the process of speciation are thus explained.  相似文献   

4.
Reversion mutagenesis of three single P elements located in the cytogenetic interval 1E-2A at the tip of the X chromosome of Drosophila melanogaster was used to recover new deletions in this chromosomal region. The deletions obtained include small aberrations within region 2A and larger lesions extending from 2A into 1E and 1B. All three screens also yielded terminal deficiencies. The new deficiencies, together with previously characterized rearrangements, were analyzed for their complementation behaviour with the maternal effect locus fs(1)Nasrat and lethal loci in the region. These analyses provide an overall genetic map of the interval 1E-2A. In addition, the smaller deletions were physically mapped within cloned genomic DNA of the 2A region.  相似文献   

5.
6.
Mutagenic potential of the influenza virus was evaluated. Based on its capacity of inducing recessive lethal mutations in the X chromosome of Drosophila melanogaster, the influenza virus can be classified as a moderate-activity mutagen. Its mutagenicity does not depend on ability to reproduce in the cell system. This virus was shown to disrupt formation of the wing, particularly wing vein M1 + 2. Cytogenetic examination of polytene X chromosomes bearing recessive lethal mutations in Drosophilasalivary glands did not reveal chromosome rearrangements. These lethals are assumed to be small deletions or point mutations. The determination of the lethal activity stage of these mutations showed that they disrupt the expression of genes functioning at various developmental stages of Drosophila.Two of them were conditionally lethal (temperature-sensitive). Two of 15 mutations analyzed were mapped to region 2B9-10–3C10-11.  相似文献   

7.
R L Garber  A Kuroiwa    W J Gehring 《The EMBO journal》1983,2(11):2027-2036
Homeotic genes are involved in the control of developmental pathways: dominant mutations at the Antennapedia locus of Drosophila, for example, lead to replacement of the antennae on the head of the fly by mesothoracic legs. Using a combination of chromosome walking and jumping, we have cloned a DNA region from Drosophila containing Antennapedia. Five DNA inversion rearrangements which are associated with the Antennapedia mutant phenotype were localized within a 25-kb region. Genomic DNA sequences from this area were used as hybridization probes to screen cDNA libraries prepared from Drosophila embryonic and pupal poly(A)+ RNA. A 2.2-kb cDNA sequence (903) was isolated which appears to derive from at least four non-contiguous chromosomal regions that span 100 kb. It includes the positions of the inversion breakpoints. A second cDNA of 2.9 kb (909) is composed of sequences from at least three chromosomal regions, two of which are similar or identical to sequences contained in the 903 clone but the third is derived from genomic DNA within a putative 903 intron. The unusual size and complexity of this locus are discussed.  相似文献   

8.
Mohler J  Pardue ML 《Genetics》1984,106(2):249-265
The region containing subdivisions 93C, 93D and 93E on chromosome 3 of Drosophila melanogaster has been screened for visible and lethal mutations. Treatment with three mutagens, γ irradiation, ethyl methanesulfonate and diepoxybutane, has produced mutations that fall into 20 complementation groups, including the previously identified ebony locus. No point mutations affecting the heat shock locus in 93D were detected; however, a pair of deficiencies that overlap in the region of this locus was isolated. Flies heterozygous in trans for this pair of deficiencies are capable of producing all of the major heat shock puffs (except 93D) and the major heat shock proteins. In addition, these flies show recovery of normal protein synthesis following a heat shock.  相似文献   

9.
The chromosomal region surrounding the structural gene for α-glycerophosphate dehydrogenase (αGpdh, 2-20.5) of Drosophila melanogaster has been studied in detail. Forty-three EMS-induced recessive lethal mutations and five previously identified visible mutations have been localized within the 25A-27D region of chromosome 2 by deficiency mapping and in some cases by a recombination analysis. The 43 lethal mutations specify 17 lethal loci. αGpdh has been localized to a single polytene chromosome band, 25F5, and there apparently are no lethals that map to the αGpdh locus.  相似文献   

10.
Genetic Analysis of the Achaete-Scute System of DROSOPHILA MELANOGASTER   总被引:17,自引:9,他引:17  
García-Bellido A 《Genetics》1979,91(3):491-520
Several mutations in the achaete-scute region of Drosophila have been analyzed phenotypically and cytologically. One group of them corresponds to point mutations, another to rearrangements with one breakpoint in this region. Trans heterozygotes of the different point mutations or of the different rearrangements show poor complementation or fail to complement; therefore, they could be interpreted as mutations affecting the same gene product. However, left-right inversion recombinants and duplication-deficiency combinations between rearrangements with different cytological breakpoints uncover a complex organization of the achaete-scute region. This region seems to contain several independent achaete and scute functions, as well as a lethal function, arranged as a tandem reverse repeat at both sides of a lethal locus. Since all of the mutants show the same phenotype qualitatively, though different quantitatively, we suggest that these functions are of a reiterative nature. The achaete-scute wild-type condition may well be dependent on a multimeric gene product made of several evolutionary related monomers.  相似文献   

11.
Chromosomal rearrangements have been instrumental in genetic studies in Drosophila. Visibly marked deficiencies (deletions) are used in mapping studies and region-specific mutagenesis screens by providing segmental haploidy required to uncover recessive mutations. Marked recessive lethal inversions are used as balancer chromosomes to maintain recessive lethal mutations and to maintain the integrity of mutagenized chromosomes. In mice, studies on series of radiation-induced deletions that surround several visible mutations have yielded invaluable functional genomic information in the regions analyzed. However, most regions of the mouse genome are not accessible to such analyses due to a lack of marked chromosomal rearrangements. Here we describe a method to generate defined chromosomal rearrangements using the Cre--loxP recombination system based on a published strategy [R. Ramirez-Solis, P. Liu, and A. Bradley, (1995) Nature 378, 720--724]. Various types of rearrangements, such as deletions, duplications, inversions, and translocations, can be engineered using this strategy. Furthermore, the rearrangements can be visibly marked with coat color genes, providing essential reagents for large-scale recessive genetic screens in the mouse. The ability to generate marked chromosomal rearrangements will help to elevate the level of manipulative mouse genetics to that of Drosophila genetics.  相似文献   

12.
Effect of chromosomal rearrangements on the expression of mutations was studied in Drosophila melanogaster regulatory genes. These were facultative dominant lethals and recessive lethals on the X chromosome obtained by the classical Muller-5 method. Chromosomal rearrangements drastically changed the expression of regulatory gene mutations. Rearrangements either caused the lethal effect of mutations or suppressed the already present lethality. The action of rearrangements exhibited the maternal or paternal effect. Irrespective of the presence in the genome of mutations at regulatory genes, a rearrangement acted as a factor decreasing fertility of the organism. The rearrangement effect is identical to the expression of regulatory genes per se. It is concluded that the chromosomal rearrangement affects the examined regulatory genes indirectly through a change in the operation of regulatory genes located within the rearrangement. Thus, rearrangements gain great importance for the definition of the pattern of genome functional activity. Widespread distribution of rearrangements in individual genotypes and their effectivity in the process of speciation are thus explained.  相似文献   

13.
We report the isolation and complementation mapping of lethal mutations within the 59AB region on the second chromosome of Drosophila melanogaster. The newly induced lethal mutations in this region define four different complementation groups. Using existing and newly induced deficiencies, these loci can be assigned to three different chromosomal intervals. Moreover, complementation analysis with chromosomes carrying various P element insertions, in combination with a molecular characterization of the corresponding insertion sites, suggests that the previously described male sterile mutation bellwether is an allele of an essential gene that encodes the alpha subunit of the mitochondrial ATP synthase.  相似文献   

14.
We have analyzed the viability of different types of X chromosomes in homozygous clones of female germ cells. The chromosomes carried viable mutations, single-cistron zygotic-lethal and semi-lethal mutations, or small (about six chromosome band) deletions. Homozygous germ-line clones were produced by recombination in females heterozygous for an X-linked, dominant, agametic female sterile.

All the zygotic-viable mutants are also viable in germ cells. Of 16 deletions tested (uncovering a total of 93 bands) only 2 (of 4 and 5 bands) are germ-cell viable. Mutations in 15 lethal complementation groups in the zeste-white region were tested. When known, the most extreme alleles at each locus were tested. Only in five loci (33%) were the mutants viable in the germ line. Similar studies of the same deletions and point-mutant lethals in epidermal cells show that 42% of the bands and 77% of the lethal alleles are viable. Thus, germ-line cells have more stringent cell-autonomous genetic requirements than do epidermal cells.

The eggs recovered from clones of three of the germ-cell viable zw mutations gave embryos arrested early in embryogenesis, although genotypically identical embryos derived from heterozygous oogonia die as larvae or even hatch as adult escapers. For two genes, homozygosis of the mutations tested also caused embryonic arrest of heterozygous female embryos, and in one case, the eggs did not develop at all. Germ-line clones of one quite leaky mutation gave eggs that were indistinguishable from normal. The abundance of genes whose products are required for oogenesis, whose products are required in the oocyte, and whose activity is required during zygotic development is discussed.

  相似文献   

15.

Background

Isolated growth hormone deficiency (IGHD) and multiple pituitary hormone deficiency (MPHD) are heterogeneous disorders with several different etiologies and they are responsible for most cases of short stature. Mutations in different genes have been identified but still many patients did not present mutations in any of the known genes. Chromosomal rearrangements may also be involved in short stature and, among others, deletions of 18q23 defined a critical region for the disorder. No gene was yet identified.

Methodology/Principal Findings

We now report a balanced translocation X;18 in a patient presenting a breakpoint in 18q23 that was surprisingly mapped about 500 Kb distal from the short stature critical region. It separated from the flanking SALL3 gene a region enriched in highly conserved non-coding elements (HCNE) that appeared to be regulatory sequences, active as enhancers or silencers during embryonic development.

Conclusion

We propose that, during pituitary development, the 18q rearrangement may alter expression of 18q genes or of X chromosome genes that are translocated next to the HCNEs. Alteration of expression of developmentally regulated genes by translocation of HCNEs may represent a common mechanism for disorders associated to isolated chromosomal rearrangements.  相似文献   

16.
17.
18.
The cytology and developmental attributes of 18 deficiency mutations in the 3A1–3C6 region of the salivary gland X chromosome of Drosophila melanogaster have been investigated. The cytological limits of several older deficiencies have been revised and clarified and several new deficiencies are characterized. The deficiency mutants, with one possible exception, show a lethal phase in the late embryonic period or the early first larval instar. In contrast, the earliest acting point mutation lethals exposed by these deficiencies generally exhibit a somewhat later, post-embryonic lethality, perhaps indicating that the deficiencies are having some cumulative or synergistic impact on development. However, even with this difference in time of lethality, it is still possible to conclude that it is not the absolute size of the deficiency but rather the character of the loci deleted that determines the impact on development. Observations on the morphology of lethal embryos shows that while this analysis is internally consistent, it does not agree with earlier work. None of the 3A1–3C6 deficiencies causes any major teratologies during embryogenesis. Furthermore, the "earliest acting" gene in this region does not lie in band 3C1 but is most likely associated with bands 3A8–10.  相似文献   

19.
Mutagenic potential of the influenza virus was evaluated. Based on its capacity of inducing recessive lethal mutations in the X chromosome of Drosophila melanogaster, the influenza virus can be classified as a moderate-activity mutagen. Its mutagenicity does not depend on ability to reproduce in the cell system. This virus was shown to disrupt formation of the wing, particularly wing vein M1 + 2. Cytogenetic examination of polytene X chromosomes bearing recessive lethal mutations in Drosophila salivary glands did not reveal chromosome rearrangements. These lethals are assumed to be small deletions or point mutations. The determination of the lethal activity stage of these mutations showed that they disrupt the expression of genes functioning at various developmental stage of Drosophila. Two of them were conditionally lethal (temperature-sensitive). Two of 15 mutations analyzed were mapped to region 2B9-10-3C10-11.  相似文献   

20.
We performed a systematic mutagenesis screen for lethals in the genomic region 61D1-2 to 61F1-2 on chromosomal arm 3L of Drosophila melanogaster. Our genetic analyses revealed that this region contains eight essential complementation groups including trio, Glut1 and extra macrochaetae (emc). For the trio locus, 22 mutant alleles were identified, and all of the alleles analyzed resulted in defects in the central nervous system of embryos, indicating that trio functions in the control of axon extension or guidance. Western analysis showed that at least three proteins are derived from trio and also suggested that a polypeptide of over 200 kDa plays a crucial role in embryonic or larval development. In addition, a newly identified emc allele was associated with several defects in embryonic morphogenesis, including abnormalities in head involution, gut formation and dorsal closure, thus revealing multiple roles for emc in embryonic development. We also performed preliminary phenotypic analyses on stocks bearing mutations belonging to the other lethal complementation groups. These genes function in essential biological events, but the mutations do not result in gross morphological changes during embryonic stages. The present study extends our knowledge of the Drosophila gene set, by identifying most of the essential genes in the chromosomal region 61D1-2 to 61F1-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号