首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several pleiotropic drug sensitivities have been described in yeast. Some involve the loss of putative drug efflux pumps analogous to mammalian P-glycoproteins, others are caused by defects in sterol synthesis resulting in higher plasma membrane permeability. We have constructed a Saccharomyces cerevisiae strain that exhibits a strong crystal violet-sensitive phenotype. By selecting cells of the supersensitive strain for normal sensitivity after transformation with a wild-type yeast genomic library, a complementing 10-kb DNA fragment was isolated, a 3.4-kb subfragment of which was sufficient for complementation. DNA sequence analysis revealed that the complementing fragment comprised the recently sequenced SGE1 gene, a partial multicopy suppressor of gal11 mutations. The supersensitive strain was found to be a sge1 null mutant. Overexpression of SGE1 on a high-copy-number plasmid increased the resistance of the supersensitive strain. Disruption of SGE1 in a wild-type strain increased the sensitivity of the strain. These features of the SGE1 phenotype, as well as sequence homologies of SGE1 at the amino acid level, confirm that the Sge1 protein is a member of the drug-resistance protein family within the major facilitator superfamily (MFS).  相似文献   

2.
While in fungi iron transport via hydroxamate siderophores has been amply proven, iron transport via enterobactin is largely unknown. Enterobactin is a catecholate-type siderophore produced by several enterobacterial genera grown in severe iron deprivation. By using the KanMX disruption module in vector pUG6 in a fet3 background of Saccharomyces cerevisiae we were able to disrupt the gene YOL158c Sce of the major facilitator super family (MFS) which has been previously described as a gene encoding a membrane transporter of unknown function. Contrary to the parental strain, the disruptant was unable to utilize ferric enterobactin in growth promotion tests and in transport assays using 55Fe-enterobactin. All other siderophore transport properties remained unaffected. The results are evidence that in S. cerevisiae the YOL158c Sce gene of the major facilitator super family, now designated ENB1, encodes a transporter protein (Enb1p), which specifically recognizes and transports enterobactin.  相似文献   

3.
Transport proteins of microorganisms may either belong to the ATP-binding cassette (ABC) superfamily or to the major facilitator (MFS)-superfamily. MFS transporters are single-polypeptide membrane transporters that transport small molecules via uniport, symport or antiport mechanisms in response to a chemiosmotic gradient. Although Saccharomyces cerevisiae is a non-siderophore producer, various bacterial and fungal siderophores can be utilized as an iron source. From yeast genome sequencing data six genes of the unknown major facilitator (UMF) family were known of which YEL065w Sce was recently identified as a transporter for the bacterial siderophore ferrioxamine B (Sit1p). The present investigation shows that another UMF gene, YHL047c Sce, encodes a transporter for the fungal siderophore triacetylfusarinine C. The gene YHL047c Sce (designated TAF1) was disrupted using the kanMX disruption module in a fet3 background (strain DEY 1394 fet3), possessing a defect in the high affinity ferrous iron transport. Growth promotion assays and transport experiments with 55Fe-labelled triacetylfusarinine C showed a complete loss of iron utilization and uptake in the disrupted strain, indicating that TAF1 is the gene for the fungal triacetylfusarinine transport in Saccharomyces cerevisiae and possibly in other siderophore producing fungi.  相似文献   

4.
5.
Normal cell multiplication requires that the events of mitosis occur in a carefully ordered fashion. Cells employ checkpoints to prevent cycle progression until some prerequisite step has been completed. To explore the mechanisms of checkpoint enforcement, we previously screened for mutants of Saccharomyces cerevisiae which are unable to recover from a transient treatment with a benzimidazole-related microtubule inhibitor because they fail to inhibit subsequent cell cycle steps. Two of the identified genes, BUB2 and BUB3, have been cloned and described (M. A. Hoyt, L. Totis, and B. T. Roberts, Cell 66:507-517, 1991). Here we present the characterization of the BUB1 gene and its product. Genetic evidence was obtained suggesting that Bub1 and Bub3 are mutually dependent for function, and immunoprecipitation experiments demonstrated a physical association between the two. Sequence analysis of BUB1 revealed a domain with similarity to protein kinases. In vitro experiments confirmed that Bub1 possesses kinase activity; Bub1 was able to autophosphorylate and to catalyze phosphorylation of Bub3. In addition, overproduced Bub1 was found to localize to the cell nucleus.  相似文献   

6.
7.
K Kuchler  R E Sterne    J Thorner 《The EMBO journal》1989,8(13):3973-3984
Saccharomyces cerevisiae MATa cells release a lipopeptide mating pheromone, a-factor. Radiolabeling and immunoprecipitation show that MATa ste6 mutants produce pro-a-factor and mature a-factor intracellularly, but little or no extracellular pheromone. Normal MATa cells carrying a multicopy plasmid containing both MFa1 (pro-a-factor structural gene) and the STE6 gene secrete a-factor at least five times faster than the same cells carrying only MFa1 in the same vector. The nucleotide sequence of the STE6 gene predicts a 1290 residue polypeptide with multiple membrane spanning segments and two hydrophilic domains, each strikingly homologous to a set of well-characterized prokaryotic permeases (including hlyB, oppD, hisP, malK and pstB) and sharing even greater identity with mammalian mdr (multiple drug resistance) transporters. These results suggest that the STE6 protein in yeast, and possibly mdr in animals, is a transmembrane translocator that exports polypeptides by a route independent of the classical secretory pathway.  相似文献   

8.
Haydon MJ  Cobbett CS 《Plant physiology》2007,143(4):1705-1719
Zinc (Zn) is an essential micronutrient required by all cells but is toxic in excess. We have identified three allelic Zn-sensitive mutants of Arabidopsis (Arabidopsis thaliana). The gene, designated ZINC-INDUCED FACILITATOR1 (ZIF1), encodes a member of the major facilitator superfamily of membrane proteins, which are found in all organisms and transport a wide range of small, organic molecules. Shoots of zif1 mutants showed increased accumulation of Zn but not other metal ions. In combination with mutations affecting shoot-to-root Zn translocation, zif1 hma2 hma4 triple mutants accumulated less Zn than the wild type but remained Zn sensitive, suggesting that the zif1 Zn-sensitive phenotype is due to altered Zn distribution. zif1 mutants were also more sensitive to cadmium but less sensitive to nickel. ZIF1 promoter-beta-glucuronidase fusions were expressed throughout the plant, with strongest expression in young tissues, and predominantly in the vasculature in older tissues. ZIF1 expression was highly induced by Zn and, to a lesser extent, by manganese. A ZIF1-green fluorescent protein fusion protein localized to the tonoplast in transgenic plants. MTP1 has been identified as a tonoplast Zn transporter and a zif1-1 mtp1-1 double mutant was more sensitive to Zn than either of the single mutants, suggesting ZIF1 influences a distinct mechanism of Zn homeostasis. Overexpression of ZIF1 conferred increased Zn tolerance and interveinal leaf chlorosis in some transgenic lines in which ZIF1 expression was high. We propose that ZIF1 is involved in a novel mechanism of Zn sequestration, possibly by transport of a Zn ligand or a Zn ligand complex into vacuoles.  相似文献   

9.
The de novo formation of multilayered spore walls inside a diploid mother cell is a major landmark of sporulation in the yeast Saccharomyces cerevisiae. Synthesis of the dityrosine-rich outer spore wall takes place toward the end of this process. Bisformyl dityrosine, the major building block of the spore surface, is synthesized in a multistep process in the cytoplasm of the prospores, transported to the maturing wall, and polymerized into a highly cross-linked macromolecule on the spore surface. Here we present evidence that the sporulation-specific protein Dtr1p (encoded by YBR180w) plays an important role in spore wall synthesis by facilitating the translocation of bisformyl dityrosine through the prospore membrane. DTR1 was identified in a genome-wide screen for spore wall mutants. The null mutant accumulates unusually large amounts of bisformyl dityrosine in the cytoplasm and fails to efficiently incorporate this precursor into the spore surface. As a result, many mutant spores have aberrant surface structures. Dtr1p, a member of the poorly characterized DHA12 (drug:H+ antiporter with 12 predicted membrane spans) family, is localized in the prospore membrane throughout spore maturation. Transport by Dtr1p may not be restricted to its natural substrate, bisformyl dityrosine. When expressed in vegetative cells, Dtr1p renders these cells slightly more resistant against unrelated toxic compounds, such as antimalarial drugs and food-grade organic acid preservatives. Dtr1p is the first multidrug resistance protein of the major facilitator superfamily with an assigned physiological role in the yeast cell.  相似文献   

10.
We report results on the functional analysis of Saccharomyces cerevisiae ORF YNL065w, predicted to code for a protein belonging to the poorly characterized major facilitator superfamily (MFS) of transporters that are involved in multidrug resistance (MDR). YNL065w is important for a moderate increase of yeast tolerance to ketoconazole and to the cationic dye crystal violet; it protects the cell against short-chain monocarboxylic acids (C(2)-C(6)), but not against highly liposoluble acids such as octanoic acid or the phenoxyacetic-acid herbicides 2,4-D and MCPA; it is also a determinant of resistance to the antiarrhytmic and antimalarial drug quinidine. The encoding ORF was, thus, denominated the AQR1 gene. Results obtained using an AQR1-lacZ fusion indicate that gene expression is very low and it is not stimulated under weak acid stress. The encoded putative transporter was localized in the plasma membrane by fluorescence microscopy observation of the overproduced Aqr1-GFP fusion protein distribution.  相似文献   

11.
12.
The gene encoding a major exopolyphosphatase (scPPX1) in Saccharomyces cerevisiae (H. Wurst and A. Kornberg, J. Biol. Chem. 269:10996-11001, 1994) has been isolated from a genomic library. The gene, located at 57 kbp from the end of the right arm of chromosome VIII, encodes a protein of 396 amino acids. Overexpression in Escherichia coli allowed the ready purification of a recombinant form of the enzyme. Disruption of the gene did not affect the growth rate of S. cerevisiae. Lysates from the mutants displayed considerably lower exopolyphosphatase activity than the wild type. The enzyme is located in the cytosol, whereas the vast accumulation of polyphosphate (polyP) of the yeast is in the vacuole. Disruption of PPX1 in strains with and without deficiencies in vacuolar proteases allowed the identification of exopolyphosphatase activity in the vacuole. This residual activity was strongly reduced in the absence of vacuolar proteases, indicating a dependence on proteolytic activation. A 50-fold-lower protease-independent activity could be distinguished from this protease-dependent activity by different patterns of expression during growth and activation by arginine. With regard to the levels of polyP in various mutants, those deficient in vacuolar ATPase retain less than 1% of the cellular polyP, a loss that is not offset by additional mutations that eliminate the cytosolic exopolyphosphatase and the vacuolar polyphosphatases dependent on vacuolar protease processing.  相似文献   

13.
14.
15.
16.
The DAT1 gene of Saccharomyces cerevisiae encodes a DNA binding protein (Dat1p) that specifically recognizes the minor groove of non-alternating oligo(A).oligo(T) tracts. Sequence-specific recognition requires arginine residues found within three perfectly repeated pentads (G-R-K-P-G) of the Dat1p DNA binding domain [Reardon, B. J., Winters, R. S., Gordon, D., and Winter, E. (1993) Proc. Natl. Acad. Sci. USA 90, 11327-1131]. This report describes a rapid and simple method for purifying the Dat1p DNA binding domain and the biochemical characterization of its interaction with oligo(A).oligo(T) tracts. Oligonucleotide binding experiments and the characterization of yeast genomic Dat1p binding sites show that Dat1p specifically binds to any 11 base sequence in which 10 bases conform to an oligo(A).oligo(T) tract. Binding studies of different sized Dat1p derivatives show that the Dat1p DNA binding domain can function as a monomer. Competition DNA binding assays using poly(I).poly(C), demonstrate that the minor groove oligo(A).oligo(T) constituents are not sufficient for high specificity DNA binding. These data constrain the possible models for Dat1p/oligo(A).oligo(T) complexes, suggest that the DNA binding domain is in an extended structure when complexed to its cognate DNA, and show that Dat1p binding sites are more prevalent than previously thought.  相似文献   

17.
A 2.1 kb DNA segment carrying the purine-cytosine permease gene (FCY2) of Saccharomyces cerevisiae was sequenced, the primary structure of the protein (533 amino acids) deduced and a folding pattern in the membrane is proposed for the permease protein. Expression of the FCY2 gene product requires a functional secretory pathway and is reduced in mnn9, a mutant strain deficient in outer chain glycosylation. The FCY2 gene was mapped on the right arm of chromosome V close to the HIS1 gene.  相似文献   

18.
This study describes the identification of Mfsd2a (major facilitator superfamily domain-containing protein 2a), a novel mammalian major facilitator superfamily domain-containing protein, and an additional closely related protein, Mfsd2b. Most intron/exon junctions are conserved between the two genes, suggesting that they are derived from a common ancestor. Mfsd2a and Mfsd2b share a 12 transmembrane alpha-helical domain structure that bears greatest similarity to that of the bacterial Na(+)/melibiose symporters. Confocal microscopy demonstrated that Mfsd2a localizes to the endoplasmic reticulum. Mfsd2a is expressed in many tissues and is highly induced in liver and BAT (brown adipose tissue) during fasting. Mfsd2a displays an oscillatory expression profile in BAT and liver, consistent with a circadian rhythm. Although the basal level of Mfsd2a expression is relatively low in mouse BAT, it is greatly induced during cold-induced thermogenesis and after treatment with betaAR (beta-adrenergic receptor) agonists. This induction is totally abolished in beta-less (betaAR-deficient) mice. These findings indicate that Mfsd2a is greatly up-regulated in BAT during thermogenesis and that its induction is controlled by the betaAR signalling pathway. The observed induction of Mfsd2a expression in cultured BAT cells by dibutyryl-cAMP is in agreement with this conclusion. The present study suggests that Mfsd2a plays a role in adaptive thermogenesis.  相似文献   

19.
Ste20/PAK serine/threonine protein kinases have been suggested as playing essential roles in cell signalling and morphogenesis as potential targets of Cdc42 and Rac GTPases. We have isolated and characterized the Saccharomyces cerevisiae SKM1 gene, which codes for a novel member of this family of protein kinases. The amino acid sequence analysis of Skm1p revealed the presence of a PH domain and a putative p21-binding domain near its amino terminus, suggesting its involvement in cellular signalling or cytoskeletal functions. However, deletion of SKM1 produced no detectable phenotype under standard laboratory conditions. Moreover, disruption of each of the two other S. cerevisiae Ste20/PAK-like kinase-encoding genes, STE20 and CLA4 , in skm1 backgrounds, showed that Skm1p is not redundant with Ste20p or Cla4p. Interestingly, overexpression of SKM1 led to morphological alterations, indicating a possible role for this protein in morphogenetic control. Furthermore, overproduction of Skm1p lacking its N-terminus caused growth arrest. This effect was also seen when similarly truncated versions of Ste20p or Cla4p were overexpressed. We further observed that overproduction of this C-terminal fragment of Skm1p complements the mating defect of a ste20 mutant strain. These results suggest that the N-terminal domains of S. cerevisiae Ste20/PAK-like protein kinases share a negative regulatory function and play a role in substrate specificity.  相似文献   

20.
Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号