首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of sodium and chlorine ions around DNA is presented from two molecular dynamics simulations of the DNA fragment d(C(5)T(5)). (A(5)G(5)) in explicit solvent with 0.8 M additional NaCl salt. One simulation was carried out for 10 ns with the CHARMM force field that keeps the DNA structure close to A-DNA, the other for 12 ns with the AMBER force field that preferentially stabilizes B-DNA conformations (, Biophys. J. 75:134-149). From radial distributions of sodium and chlorine ions a primary ion shell is defined. The ion counts and residence times of ions within this shell are compared between conformations and with experiment. Ordered sodium ion sites were found in minor and major grooves around both A and B-DNA conformations. Changes in the surrounding hydration structure are analyzed and implications for the stabilization of A-DNA and B-DNA conformations are discussed.  相似文献   

2.
We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5) . d(A5G5) (Feig, M. and B.M. Pettitt, 1997, Experiment vs. Force Fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. (101:7361-7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.  相似文献   

3.
The crystal structure of the DNA decamer C-C-A-A-C-G-T-T-G-G has been solved to a resolution of 1.4 A, and is compared with the 1.3 A structure of C-C-A-A-G-A-T-T-G-G and the 1.6 A structure of C-C-A-G-G-C-C-T-G-G. All three decamers crystallize isomorphously in space group C2 with five base-pairs per asymmetric unit, and with decamer double helices stacked atop one another along the c axis in a manner that closely approximates a continuous B helix. This efficient stacking probably accounts for the high resolution of the crystal data. Comparison of the three decamers reveals the following. (1) Minor groove width is more variable than heretofore realized. Regions of A.T base-pairs tend to be narrower than average, although two successive A.T base-pairs alone may not be sufficient to produce narrowing. The minor groove is wider in regions where BII phosphate conformations are opposed diagonally across the groove. (2) Narrow regions of minor groove exhibit a zig-zag spine of hydration, as was first seen in C-G-C-G-A-A-T-T-C-G-C-G, whereas wide regions show two ribbons of water molecules down the walls, connecting base edge N or O with sugar O-4' atoms. Regions of intermediate groove width may accommodate neither pattern of hydration well, and may exhibit a less regular pattern of hydration. (3) Base-pair stacking is virtually identical at equivalent positions in the three decamers. The unconnected step from the top of one decamer helix to the bottom of the next helix is a normal helix step in all respects, except for the absence of connecting phosphate groups. (4) BII phosphate conformation require the unstacking of the two bases linked by the phosphate, but do not necessarily follow as an inevitable consequence of unstacking. They have an influence on minor groove width as noted in point (1) above. (5) Sugar ring pseudorotation P and main-chain torsion angle delta show an excellent correlation as given by the equation: delta = 40 degrees cos (P + 144 degrees) + 120 degrees. Although centered around C-2'-endo, the conformations in these B-DNA helices are distributed broadly from C-3'-exo to O-4'-endo, unlike the tighter clustering around C-3'-endo observed in A-DNA oligomer structures.  相似文献   

4.
Pastor N 《Biophysical journal》2005,88(5):3262-3275
DNA geometry depends on relative humidity. Using the CHARMM22 force field to push B-DNA to A-DNA, a molecular dynamics simulation of a mixed-sequence 24-basepair DNA double-stranded oligomer, starting from B-DNA, was carried out to explore both the mechanism of the transition and the evolution of hydration patterns on the surface of DNA. Over the 11-ns trajectory, the transition recapitulates the slide-first, roll-later mechanism, is opposed by DNA electrostatics, and is favored by an increasing amount of condensed sodium ions. Hydration was characterized by counting the hydrogen bonds between water and DNA, and by the number of water bridges linking two DNA atoms. The number of hydrogen bonds between water and DNA remains constant during the transition, but there is a 40% increase in the number of water bridges, in agreement with the principle of economy of hydration. Water bridges emerge as delicate sensors of both structure and dynamics of DNA. Both local flexibility and the frustration of the water network on the surface of DNA probably account for the low populations and short residence times of the bridges, and for the lubricant role of water in ligand-DNA interactions.  相似文献   

5.
Nucleotide hydration is important for the understanding of the stability of and the transitions between the different helical conformations of DNA. We have used energy minimization and geometric criteria in order to look for possible sites for solvent which can bridge more than one polar or charged atomic group on a nucleotide. Such bridging sites between phosphate groups have been seen experimentally and used to explain the A to B transition. We show that these phosphate bridging sites occur at energy minima around A-DNA but do not occur around B-DNA. We also find that there are further low energy bridging sites which depend on sequence and which enable the more economical hydration of the A form.  相似文献   

6.
The synthetic DNA oligomer C-G-C-G-C-G-T-T-T-T-C-G-C-G-C-G crystallizes as a Z-DNA hexamer, capped at one end by a T4 loop. The crystals are monoclinic, space group C2, with a = 57.18 A, b = 21.63 A, c = 36.40 A, beta = 95.22 degrees, and one hairpin molecule per asymmetric unit. The structure of the z-hexamer stem was determined by molecular replacement, and the T4 loop was positioned by difference map methods. The final R factor at 2.1 A resolution for hairpin plus 70 water molecules is 20% for 2 sigma data, with a root-mean-square error of 0.26 A. The (C-G)3 stem resembles the free Z-DNA hexamer with minor crystal packing effects. The T4 loop differs from that observed on a B-DNA stem in solution, or in longer loops in tRNA, in that it shows intraloop and intermolecular interactions rather than base stacking on the final base-pair of the stem. Bases T7, T8 and T9 stack with one another and with the sugar of T7. Two T10 bases from different molecules stack between the C1-G12 terminal base-pairs of a third and fourth molecule, to simulate a T.T "base-pair". Distances between thymine N and O atoms suggest that the two thymine bases are hydrogen bonded, and a keto-enol tautomer pair is favored over disordered keto-keto wobble pairs. The hairpin molecules pack in the crystal in herringbone columns in a manner that accounts well for the observed relative crystal growth rates in a, b and c directions. Hydration seems to be most extensive around the phosphate groups, with lesser hydration within the grooves.  相似文献   

7.
Hydration of the DNA bases is local.   总被引:3,自引:1,他引:2       下载免费PDF全文
Ordered hydration sites were determined for the nucleotide bases in B-type conformations using the crystal structure data on 14 B-DNA decamer structures. A method of density representation was extended so that positions, occupancies, and distributions of the hydration sites were predicted around a B-DNA double helix by a method analogous to crystallographic refinement. The predicted hydration sites correctly reproduce the main features of hydration around the B-DNA dodecamer. In contrast to the previous observations, the newly available crystal data show the same extent of hydration of guanine and adenine, and of cytosine and thymine.  相似文献   

8.
We have determined single crystal structures of an A-DNA decamer and a B-DNA dodecamer at 0.83 and 0.95 A, respectively. The resolution of the former is the highest reported thus far for any right-handed nucleic acid duplex and the quality of the diffraction data allowed determination of the structure with direct methods. The structures reveal unprecedented details of DNA fine structure and hydration; in particular, we have reexamined the overall hydration of A- and B-form DNA, the distribution of water around phosphate groups, and features of the water structure that may underlie the B to A transition.  相似文献   

9.
Three empirical potentials of the Lennard-Jones type taken from literature were used to calculate van der Waals contributions to the base-pair couples stacking energies in B-DNA and A-DNA type double helical conformations. The information obtained can be summarized as follows: (1) Purine-pyrimidine and purine-purine (pyrimidine-pyrimidine in the complementary strand) sequences preferred right-handed helical arrangement, whereas pyrimidine-purine sequences favoured left-handed (C-G) or unwound (T-A) stacking geometry; in the latter case this only held for B- but not A-DNA (the C-G sequence was not studied in A-DNA owing to difficulties (see below) with the G amino group in B-DNA); (2) Positive propeller twist of base-pairs was stable in both B- and A-DNA; the thymine methyl group promoted the propeller and this effect was strongest in the A-T step; (3) Tilt of base pairs occurred around zero in B-DNA and between 15-20 degrees C in A-DNA, in agreement with the experimental observations; (4) Vertical separation of base pairs was optimal within 0.33-0.34 nm for B-DNA and around 0.29 nm for A-DNA using the 9-6 potential. The 12-6 potential gave similar results with B-DNA as the 9-6 potential if, however, base pairs were separated by 0.35-0.36 nm; (5) The calculated effect of the guanine amino group was substantially stronger than expected on the basis of data derived from X-ray diffraction studies of oligonucleotide single crystals; (6) In comparison with the 9-6 potential, the 12-6 potential provided more strict energy minima. In summary, the empirical potentials reproduce, at least semiquantitatively, many but not all DNA properties; this should be taken into account whenever the potentials are used for prediction purposes.  相似文献   

10.
11.
All crystal structures of A-DNA duplexes exhibit a typical crystal packing, with the termini of one molecule abutting the shallow grooves of symmetry related neighbors, while all other forms (B, Z, and RNA) tend to form infinitely stacked helices. The A-DNA arrangement leads to the formation of shallow groove base multiples that have implications for the structure of DNA in compacted states. The characteristic packing leaves big solvent channels, which can be sometimes occupied by B-DNA duplexes. Comparisons of the structures of the same oligomer crystallizing in two different space groups and of different sequences crystallizing in the same space group show that the lattice forces dominate the A-DNA conformation in the crystals, complicating the effort to elucidate the influence of the base sequence on the structures. Nevertheless, in both alternating and nonalternating fragments some sequence effects can still be uncovered. Furthermore, several studies have started to define the minimal sequence changes or chemical modifications that can interconvert the oligomers between different double-helical conformers (A-, B-, and Z-form). Overall, it is seen that the rigid nucleotide principle applies to the oligomeric fragments. Besides the structures of the naked DNAs, their interactions with water, polyamines, and metal ions have attracted considerable attention. There are conserved patterns in the hydration, involving both the grooves and the backbone, which are different from those of B-DNA or Z-DNA. Overall, A-DNA seems to be more economically hydrated than B-DNA, particularly around the sugar-phosphate backbone. Spermine was found to be able to bind exclusively to either of the grooves or to the phosphate groups of the backbone, or exhibit a mixed binding mode. The located metal cations prefer binding to guanine bases and phosphate groups. The only mispairs investigated in A-DNA are the wobble pairs, yielding structural insight into their effects on helix stabilities and hydration. G · T wobble pairs have been determined in various sequence contexts, where they differentially affect the conformations and stableness of the duplexes. The structure of a G · m5C base pair, which surprisingly also adopted the wobble conformation, suggests that a similar geometry may transiently exist for G · C pairs. These results from the crystalline state will be compared to the solution state and discussed in relation to their relevance in biology. © 1997 John Wiley & Sons, Inc. Biopoly 44: 45–63, 1997  相似文献   

12.
Y G Gao  M Sriram    A H Wang 《Nucleic acids research》1993,21(17):4093-4101
Metal ion coordination to nucleic acids is not only required for charge neutralization, it is also essential for the biological function of nucleic acids. The structural impact of different metal ion coordinations of DNA helices is an open question. We carried out X-ray diffraction analyses of the interactions of the two transition metal ions Co(II) and Cu(II) and an alkaline earth metal ion Ba(II), with DNA of different conformations. In crystals, Co(II) ion binds exclusively at the N7 position of guanine bases by direct coordination. The coordination geometry around Co(II) is octahedral, although some sites have an incomplete hydration shell. The averaged Co-N7 bond distance is 2.3 A. The averaged Co-N7-C8 angle is 121 degrees, significantly smaller than the value of 128 degrees if the Co-N7 vector were to bisect the C5-N7-C8 bond angle. Model building of Co(II) binding to guanine N7 in B-DNA indicates that the coordinated waters in the axial positions would have a van der Waals clash with the neighboring base on the 5' side. In contrast, the major groove of A-DNA does not have enough room to accommodate the entire hydration shell. This suggests that Co(II) binding to either B-DNA or A-DNA may induce significant conformational changes. The Z-DNA structure of Cu(II)-soaked CGCGTG crystal revealed that the Cu(II) ion is bis-coordinated to N7 position of G10 and #G12 (# denotes a symmetry-related position) bases with a trigonal bipyramid geometry, suggesting a possible N7-Cu-N7 crosslinking mechanism. A similar bis-coordination to two guanines has also been seen in the interaction of Cu(II) in m5CGUAm5CG Z-DNA crystal and of Ba(II) with two other Z-DNA crystals.  相似文献   

13.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

14.
The self-complementary dodecamer d(CGCAAATTTGCG) crystallizes as a double helix of the B form and manifests a Raman spectrum with features not observed in Raman spectra of either DNA solutions or wet DNA fibers. A number of Raman bands are assigned to specific nucleoside sugar and phosphodiester conformations associated with this model B-DNA crystal structure. The Raman bands proposed as markers of the crystalline B-DNA structure are compared and contrasted with previously proposed markers of Z-DNA and A-DNA crystals. The results indicate that the three canonical forms of DNA can be readily distinguished by Raman spectroscopy. However, unlike Z-DNA and A-DNA, which retain their characteristic Raman fingerprints in aqueous solution, the B-DNA Raman spectrum is not completely conserved between crystal and solution states. The Raman spectra reveal greater heterogeneity of nucleoside conformations (sugar puckers) in the DNA molecules of the crystal structure than in those of the solution structure. The results are consistent with conversion of one-third of the dG residues from the C2'-endo/anti conformation in the solution structure to another conformation, deduced to be C1'-exo/anti, in the crystal. The dodecamer crystal also exhibits unusually broad Raman bands at 790 and 820 cm-1, associated with the geometry of the phosphodiester backbone and indicating a wider range of (alpha, zeta) backbone torsion angles in the crystal than in the solution structure. The results suggest that backbone torsion angles in the CGC and GCG sequences, which flank the central AAATTT sequence, are significantly different for crystal and solution structures, the former containing the greater diversity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Feig M  Pettitt BM 《Biopolymers》1998,48(4):199-209
Recent results from molecular dynamics (MD) simulations on hydration of DNA with respect to conformation are reviewed and compared with experimental data. MD simulations of explicit solvent around DNA can now give a detailed model of DNA that not only matches well with the experimental data but provides additional insight beyond current experimental limitations. Such simulation results are analyzed with a focus on differential hydration properties between A- and B-DNA and between C/G and A/T base pairs. The extent of hydration is determined from the number of waters in the primary shell and compared to experimental numbers from different measurements. High-resolution hydration patterns around the whole DNA are shown and correlated with the conformations. The role of ions associating with DNA is discussed with respect to changes in the hydration structure correlating with DNA conformation.  相似文献   

16.
The results of a 3-ns molecular dynamics simulation of the dodecamer duplex d(TATGGATCCATA)(2) recognized by the BamHI endonuclease are presented here. The DNA has been simulated as a flexible molecule using an AMBER force field and the Ewald summation method, which eliminates the undesired effects of truncation and permits evaluation of the full effects of electrostatic forces. The starting B conformation evolves toward a configuration quite close to that observed through x-ray diffraction in its complex with BamHI. This configuration is fairly stable and the Watson-Crick hydrogen bonds are well maintained over the simulation trajectory. Hydration analysis indicates a preferential hydration for the phosphate rather than for the ester oxygens. Hydration shells in both the major and minor groove were observed. In both grooves the C-G pairs were found to be more hydrated than A-T pairs. The "spine of hydration" in the minor groove was clear. Water residence times are longer in the minor groove than in the major groove, although relatively short in both cases. No special long values are observed for sites where water molecules were observed by x-ray diffraction, indicating that water molecules having a high probability of being located in a specific site are also fast-exchanging.  相似文献   

17.
Three crystal structures containing the entire Sp1 consensus sequence d(GGGGCGGGG) with two or three additional base-pairs on either the 5' or 3' ends and overhangs have been determined. Despite the different lengths of DNA in the pseudo-dodecamers and pseudo-tridecamer, all three structures form A-DNA duplexes that share a common set of crystal contacts, including a T*(G.C) base triplet and a 5'-overhang that flips out and away from the helical axes to form a Hoogsteen base-pair with the 3'-overhang of a symmetry mate. The global conformations of the three structures differ, however, in the widths of their respective major grooves, the lengths of the molecules, and the extent of crystal packing. The structures were determined from crystals grown in an unusual precipitant for A-DNA, polyethylene glycol (PEG) 400, in combination with polyamines or ions; cobalt hexamine for the pseudo-tridecamer, and spermidine for the pseudo-dodecamers. As the Sp1 binding site is a target for antiviral and anticancer drugs, pseudo-dodecamer crystals were soaked with one such antiviral and anticancer compound, P4N. Although P4N was not visualized unambiguously in the electron density maps, the effect of the drug is evident from significant differences in the lattice constants, crystal packing, and overall conformation of the structure.  相似文献   

18.
Single crystal X-ray diffraction techniques have been used to determine the structure of the DNA octamer d(G-G-G-G-C-T-C-C) at a resolution of 2.25 A. The asymmetric unit consists of two strands coiled about each other to produce an A-type DNA helix. The double helix contains six G . C Watson-Crick base-pairs and two G . T mismatched base-pairs. The mismatches adopt a "wobble" type structure in which both bases retain their major tautomer forms. The double helix is able to accommodate this G . T pairing with little distortion of the overall helical conformation. Crystals of this octamer melt at a substantially lower temperature than do those of a related octamer also containing two G . T base-pairs. We attribute this destabilization to disruption of the hydration network around the mismatch site combined with changes in intermolecular packing. Full details are given of conformational parameters, base stacking, intermolecular contacts and hydration involving 52 solvent molecules.  相似文献   

19.
Increasingly exact measurement of single crystal X-ray diffraction data offers detailed characterization of DNA conformation, hydration and electrostatics. However, instead of providing a more clear and unambiguous image of DNA, highly accurate diffraction data reveal polymorphism of the DNA atomic positions and conformation and hydration. Here we describe an accurate X-ray structure of B-DNA, painstakingly fit to a multistate model that contains multiple competing positions of most of the backbone and of entire base pairs. Two of ten base-pairs of CCAGGCCTGG are in multiple states distinguished primarily by differences in slide. Similarly, all the surrounding ions are seen to fractionally occupy discrete competing and overlapping sites. And finally, the vast majority of water molecules show strong evidence of multiple competing sites. Conventional resolution appears to give a false sense of homogeneity in conformation and interactions of DNA. In addition, conventional resolution yields an average structure that is not accurate, in that it is different from any of the multiple discrete structures observed at high resolution. Because base pair positional heterogeneity has not always been incorporated into model-building, even some high and ultrahigh-resolution structures of DNA do not indicate the full extent of conformational polymorphism.  相似文献   

20.
The complex of the minor groove binding drug distamycin and the B-DNA oligomer d-(CGCAAATTTGCG) was investigated by molecular dynamics simulations. For this purpose, accurate atomic partial charges of distamycin were determined by extended quantum chemical calculations. The complex was simulated without water but with hydrated counterions. The oligomer without the drug was simulated in the same fashion and also with 1713 water molecules and sodium counterions. The simulations revealed that the binding of distamycin in the minor groove induces a stiffening of the DNA helix. The drug also prevents a transition from B-DNA to A-DNA that was found to occur rapidly (30 ps) in the segment without bound distamycin in a water-free environment but not in simulations including water. In other simulations, we investigated the relaxation processes after distamycin was moved from its preferred binding site, either radially or along the minor groove. Binding in the major groove was simulated as well and resulted in a bound configuration with the guanidinium end of distamycin close to two phosphate groups. We suggest that, in an aqueous environment, tight hydration shells covering the DNA backbone prevent such an arrangement and thus lead to distamycin's propensity for minor groove binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号