首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the biochemical basis of the differences in the insecticidal spectrum of Bacillus thuringiensis insecticidal crystal proteins (ICPs), we performed membrane binding and toxicity assays with three different ICPs and three lepidopteran species. The three ICPs have different toxicity patterns in the three selected target species. Binding studies with these 125I-labeled ICPs revealed high-affinity saturable binding to brush border membrane vesicles of the sensitive species. ICPs with no toxicity against a given species did not bind saturably to vesicles of that species. Together with previous data that showed a correlation between toxicity and ICP binding, our data support the statement that differences in midgut ICP receptors are a major determinant of differences in the insecticidal spectrum of the entire lepidopteran-specific ICP family. Receptor site heterogeneity in the insect midgut occurs frequently and results in sensitivity to more than one type of ICP.  相似文献   

2.
To investigate the biochemical basis of the differences in the insecticidal spectrum of Bacillus thuringiensis insecticidal crystal proteins (ICPs), we performed membrane binding and toxicity assays with three different ICPs and three lepidopteran species. The three ICPs have different toxicity patterns in the three selected target species. Binding studies with these 125I-labeled ICPs revealed high-affinity saturable binding to brush border membrane vesicles of the sensitive species. ICPs with no toxicity against a given species did not bind saturably to vesicles of that species. Together with previous data that showed a correlation between toxicity and ICP binding, our data support the statement that differences in midgut ICP receptors are a major determinant of differences in the insecticidal spectrum of the entire lepidopteran-specific ICP family. Receptor site heterogeneity in the insect midgut occurs frequently and results in sensitivity to more than one type of ICP.  相似文献   

3.
The kinetics of K(+)-leucine cotransport in the midgut of lepidopteran larvae was investigated using brush border membrane vesicles. Initial rate (3 s) of leucine uptake was determined under experimental conditions similar to those occurring in vivo, i.e. in the presence of delta psi much greater than 0 (inside negative) and a delta pH of 1.4 units (7.4in/8.8out). Leucine and K+ bind to the carrier according to a sequential mechanism, and the binding of one substrate changed the dissociation constant for the other substrate by a factor of 0.15. Both trans-K+ and trans-leucine were mixed-type inhibitors of leucine uptake. Moreover, a portion of total leucine uptake was K+ independent, and it was competitively inhibited by trans-leucine. We interpret the trans inhibitory effects to mean that the partially loaded K+ only form is virtually unable to translocate across the membrane, whereas the binary complex carrier, leucine, can isomerize from the trans to the cis side of the membrane. However, the K(+)-independent leucine uptake occurs with a Keq greater than 1, i.e. the efflux route through the partially loaded leucine only form is slower than the rate of isomerization of the unloaded carrier from trans to cis side. Taken together, these results suggest a model in which transport occurs by an iso-random Bi Bi system. Since K+ does not act as a pure competitive activator, this model is different from that proposed for most of the Na(+)-linked solutes transport agencies and may be related to the broadening of the cation specificity of the amino acid transporters in lepidopteran larvae.  相似文献   

4.
The shape and stability of intestinal epithelial cell microvilli are maintained by a cytoskeletal core composed of a bundle of actin filaments with several associated proteins. The core filaments are intimately associated with the overlying plasma membrane, in which there occur rapid turnover of proteins and constant incorporation of new membrane. Previous work has shown that starvation or inhibition of protein synthesis results in modulation of microvillar length, which indicates that there may be cytoskeletal protein turnover. We demonstrate herein, by means of in vivo pulse labeling with radioactive amino acids, that turnover of brush border cytoskeletal proteins occurs in mature absorptive cells. Turnover of cytoskeletal proteins appears to be quite slow relative to membrane protein turnover, which suggests that the turnover of these two microvillar compartments is not coupled. We thus conclude that cytoskeletal protein turnover may be a factor used to maintain normal length and stability of microvilli and that the cytoskeleton cannot be considered a static structure.  相似文献   

5.
The insect midgut epithelium is composed of columnar, goblet, and regenerative cells. Columnar epithelial cells are the most abundant and have membrane protrusions that form the brush border membrane (BBM) on their apical side. These increase surface area available for the transport of nutrients, but also provide opportunities for interaction with xenobiotics such as pathogens, toxins and host plant allelochemicals. Recent improvements in proteomic and bioinfbrmatics tools provided an opportunity to determine the proteome of the T. ni BBM in unprecedented detail. This study reports the identification of proteins from BBM vesicles (BBMVs) using single dimension polyacrylamide gel elec? trophoresis coupled with multi-dimensional protein identification technology. More than 3000 proteins were associated with the BBMV of which 697 were predicted to possess either a signal peptide, at least one transmembrane domain or a GPI-anchor signal. Of these, bioinfbrmatics analysis and manual curation predicted that 185 may be associated with the BBMV or epithelial cell plasma membrane. These are discussed with respect to their predicted functions, namely digestion, nutrient uptake, cell signaling, development, cell-cell interactions, and other functions. We believe this to be the most detailed proteomic analysis of the lepidopteran midgut epithelium membrane to date, which will provide information to better understand the biochemical, physiological and pathological processes taking place in the larval midgut.  相似文献   

6.
Z Lojda 《Histochemistry》1979,64(2):205-221
A histochemical method for the demonstration of a brush border endopeptidase is described based on results of biochemical and histochemical experiments. The substrate of choice is Glut-Ala-Ala-Ala-MNA which displays a very good localization ability and suitable kinetic properties. Km estimated in rat kidney homogenate amounts to 2.35 X 10(-4) M. pH optimum of this endopeptidase associated with the brush border membrane is in the alkaline range. The activity is dependent on the buffer used. In phosphate and cacodylate buffers of pH 7.2 about 30% lower activity in rat kidney and about 25% lower activity in rat small intestine than in Tris-HCl buffer of the same pH was found. The most suitable diazonium salt for the detection "in situ" is Fast Blue B. It inhibits the endopeptidase activity of rat kidney by about 85% at pH 7.2 AND BY ABOUT 55% AT PH 6.0. The best results are obtained in cryostat sections adherent to semipermeable membranes treated with chloroform-acetone before the incubation. A microdensitometric evaluation of the reaction product is possible and results are in good agreement with those of the biochemical determination. When Suc-Ala-Ala-Ala-INA is used as substrate hexazonium-p-rosaniline is the most suitable coupling agent although it inhibits more than Fast Blue B. The reaction using acylated trialanyl naphthylamides as substrates runs in two steps. Endopeptidase sets free Ala-NA which is attacked by aminopeptidase M. Aminopeptidase M is not reaction rate or localization limiting factor because its activity in the brush border is very high and the enzyme is anchored to the cell membrane very closely to endopeptidase. In homogenates of rat kidney and jejunal mucosa the endopeptidase activity was inhibted by EDTA (2X10(-3) M) by 75% in the kidney and by 68% in the jejunum, by DFP (10(-3) M) by 41% in the kidney and by 35% in the intestine, by Mn2+ (5X10(-3) M) by 25% in the kidney and by 30% in the intestine. No inhibition was exerted by E 600. In sections the results were similar. 1,10-phenanthroline (10(-2) M) caused a substantial inhibition. Endopeptidase activity was detected in the brush border of cells of proximal convuluted tubules of the kidney and in the brush border of differentiated enterocytes of the small intestine. In the same species enterocytes display a lower activity than kidney tubular cells. There are species differences in the distribution pattern of endopeptidase in the kidney. In the rabbit and man the positive reaction occurs in the whole cortex. It is distributed unevenly, however. In the rat the tubules of the inner cortex display a very high activity. In the outer cortex straight portions react strongly. In the rabbit kidney cells of the parietal layer of Bowman's capsule display a weak reaction as well. No sex differences were found in the distribution pattern of endopeptidase in the rat kidney. In the intestine of all species examined a proximo-distal gradient was found...  相似文献   

7.
We analyzed brush border membrane vesicle proteins from isolated midguts of the mosquito Aedes aegypti, by two proteomic methods: two-dimensional gel electrophoresis (isoelectric focusing and SDS-PAGE) and a shotgun two-dimensional liquid chromatographic (LS/LS) approach based on multidimensional protein identification technology (MudPIT). We were interested in the most abundant proteins of the apical brush border midgut membrane. About 400 spots were detected on 2D gels and 39 spots were cored and identified by mass spectrometry. 86 proteins were identified by MudPIT. Three proteins, arginine kinase, putative allergen and actin are shown to be the most predominant proteins in the sample. The total number of 36 proteins detected by both methods represents the most abundant proteins in the BBMV.  相似文献   

8.
L-leucine uptake into membrane vesicles from Bombyx mori larval midgut was tested for inhibition by 55 compounds, which included sugars, N-methylated, alpha-, beta-, gamma-, delta-, epsilon-amino acids, primary amines, alpha-amino alcohols, monocarboxylic organic acids and alpha-ketoacids. Based on cis-inhibition experiments performed at the high pH (10.8) characteristic of the midgut luminal content in vivo, we find that the carrier binding site interacts with molecules which possess a well-defined set of structural features. Amino acids are preferentially accepted as anions and the ideal inhibitor must have an hydrophobic region and a polar head constituted by a chiral carbon atom bearing two hydrophilic groups, a deprotonated amino-group and a dissociated carboxylic group. Binding is reduced if one of the two hydrophilic groups is removed. Lowering the pH to less alkaline value (8.8) only affects the affinity of delta- and epsilon-amino acids, which are excluded from binding because of their positively charged side-chain. Modifications of the potassium electrochemical gradient increased the affinity constant values of the molecules, but have little effect on the rank of specificity. Physiological implications of the data reported are discussed.  相似文献   

9.
《Insect Biochemistry》1989,19(4):337-342
Brush border membrane vesicles (BBMV) were prepared from freshly isolated posterior larval Manduca sexta midguts by differential calcium precipitation, differential magnesium precipitation and differential ultrasonication. BBMV were also prepared from frozen posterior larval M. sexta midguts by differential calcium precipitaion and differential magnesium precipitation. The yield of BBMV by both differential precipitation methods was 5–6 times greater than that by the differential ultrasonification method. Enrichments of the brush border membrane marker enzymes alkaline phosphatase, γ-glutamyl transferase, and aminopeptidase were similar in all preparations. The polypeptide composition of all preparations was also similar. The specific activity of mitochondrial and microsomal marker enzymes was higher in BBMV prepared from freshly isolated midguts by the differential precipitation methods than in BBMV prepared by the ultrasonication method. The specific activity of cytochrome-c oxidase was 2.5–7 times higher in BBMV prepared from frozen midguts than in BBMV prepared from fresh tissue.  相似文献   

10.
All domains of Cry1A toxins insert into insect brush border membranes   总被引:1,自引:0,他引:1  
A critical step in understanding the mode of action of insecticidal crystal toxins from Bacillus thuringiensis is their partitioning into membranes and, in particular, the insertion of the toxin into insect brush border membranes. The Umbrella and Penknife models predict that only alpha-helix 5 of domain I along with adjacent helices alpha-4 or alpha-6 insert into the brush border membranes because of their hydrophobic nature. By employing fluorescent-labeled cysteine mutations, we observe that all three domains of the toxin insert into the insect membrane. Using proteinase K protection assays, steady state fluorescence quenching measurements, and blue shift analysis of acrylodan-labeled cysteine mutants, we show that regions beyond those proposed by the two models insert into the membrane. Based on our studies, the only extended region that does not partition into the membrane is that of alpha-helix 1. Bioassays and voltage clamping studies show that all mutations examined, except certain domain II mutations in loop 2 (e.g. F371C and G374C), which disrupt membrane partitioning, retain their ability to form ion channels and toxicity in Manduca sexta larvae. This study confirms our earlier hypothesis that insertion of crystal toxin does not occur as separate helices alone, but virtually the entire molecule inserts as one or more units of the whole molecule.  相似文献   

11.
Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network.  相似文献   

12.
Summary A histochemical method for the demonstration of a brush border endopeptidase is described based on results of biochemical and histochemical experiments. The substrate of choice is Glut-Ala-Ala-Ala-MNA which displays a very good localization ability and suitable kinetic properties. Km estimated in rat kidney homogenate amounts to 2.35×10–4 M. pH optimum of this endopeptidase associated with the brush border membrane is in the alkaline range. The activity is dependent on the buffer used. In phosphate and cacodylate buffers of pH 7.2 about 30% lower activity in rat kidney and about 25% lower activity in rat small intestine than in Tris-HCl buffer of the same pH was found. The most suitable diazonium salt for the detection in situ is Fast Blue B. It inhibits the endopeptidase activity of rat kidney by about 85% at pH 7.2 and by about 55% at pH 6.0. The best results are obtained in cryostat sections adherent to semipermeable membranes treated with chloroform-acetone before the incubation. A microdensitometric evaluation of the reaction product is possible and results are in good agreement with those of the biochemical determination. When Suc-Ala-Ala-Ala-INA is used as substrate hexazonium-p-rosaniline is the most suitable coupling agent although it inhibits more than Fast Blue B. The reaction using acylated trialanyl naphthylamides as substrates runs in two steps. Endopeptidase sets free Ala-NA which is attacked by aminopeptidase M. Aminopeptidase M is not reaction rate or localization limiting factor because its activity in the brush border is very high and the enzyme is anchored to the cell membrane very closely to endopeptidase. In homogenates of rat kidney and jejunal mucosa the endopeptidase activity was inhibited by EDTA (2×10–3M) by 75% in the kidney and by 68% in the jejunum, by DFP (10–3M) by 41% in the kidney and by 35% in the intestine, by Mn2+ (5×10–3M) by 25% in the kidney and by 30% in the intestine. No inhibition was exerted by E 600. In sections the results were similar. 1,10-phenanthroline (10–2M) caused a substantial inhibition.Endopeptidase activity was detected in the brush border of cells of proximal convuluted tubules of the kidney and in the brush border of differentiated enterocytes of the small intestine. In the same species enterocytes display a lower activity than kidney tubular cells. There are species differences in the distribution pattern of endopeptidase in the kidney. In the rabbit and man the positive reaction occurs in the whole cortex. It is distributed unevenly, however. In the rat the tubules of the inner cortex display a very high activity. In the outer cortex straight portions react strongly. In the rabbit kidney cells of the parietal layer of Bowman's capsule display a weak reaction as well. No sex differences were found in the distribution pattern of endopeptidase in the rat kidney. In the intestine of all species examined a proximo-distal gradient was found. The reaction appears in the duodenum, reaches its maximum in the jejunum and declines in the aboral direction. In patients suffering coeliac sprue the endopeptidase is the most seriously affected enzyme of the brush border peptidases which can be demonstrated in situ. There follow in decreasing order -glutamyl transferase, dipeptidyl (amino) peptidase IV, aminopeptidase A and aminopeptidase M.  相似文献   

13.
1. Some properties of a brush-border neutral endopeptidase purified from rabbit kidney were investigated. The peptidase was assayed by its ability to hydrolyse [125I]iodoinsulin B chain. 2. The enzyme was found to be homogeneous when studied in the analytical ultracentrifuge and stained as a single glycoprotein band after electrophoresis in polyacrylamide gels. 3. The molecular weight was estimated by gel filtration in columns of Sephadex G-200, by polyacrylamide-gel electrophoresis in the presence of 2-mercapto-ethanol and sodium dodecyl sulphate and by sedimentation equilibrium in the ultra-centrifuge. The estimates fell within the range 87000–96000. The mean from two sedimentation equilibrium experiments was 93000, though this estimate may be slightly inflated because of the carbohydrate component of the enzyme. No evidence of dissociation into smaller subunits was obtained in the presence of thiol, sodium dodecyl sulphate or guanidine hydrochloride. 4. The endopeptidase was maximally active at pH6.0, although in phosphate buffer, which was strongly inhibitory, an optimum above pH8 was observed. 5. The enzyme was not affected by di-isopropyl phosphofluoridate nor by several thiol reagents. It was, however, strongly inhibited by many thiols and by EDTA and other chelating agents. 6. Although activity of the EDTA-treated enzyme could be partially restored by various bivalent metal ions, the optimum concentration for its reactivation by Zn2+ was lower than that for other ions. This metal was detected in the enzyme preparation by atomic absorption spectrophotometry in an amount equivalent to approximately one atom/mol. 7. The enzyme is the only endopeptidase shown to be located in the kidney brush border and is the first mammalian example of a neutral Zn2+- activated endopeptidase to be characterized.  相似文献   

14.
15.
The aminopeptidase from hog intestinal brush border   总被引:25,自引:0,他引:25  
  相似文献   

16.
The binding of cyclic AMP to the proximal tubule luminal (brush border) membrane isolated from the rabbit renal cortex was studied. The rate of binding was dependent on temperature; at 37 degrees equilibrium was attained in 45 min, whereas at 0 degrees 120 min was required. The final levels of binding were identical. The binding of 3H-cyclic AMP was reversed by dilution or addition of unlabeled cyclic nucleotide. Debinding was markedly temperature sensitive. Binding was only partially saturable with respect to cyclic AMP concentration, apparently with more than one binding site. The cyclic AMP bound to the membrane was recovered unchanged. When bound to the membrane cyclic AMP was resistant to hydrolysis by endogenous membrane or exogenously added phosphodiesterase. The binding to the membranes was relatively specific for cyclic AMP, although other cyclic purine nucleotides inhibited, cyclic IMP greater than dibutyryl cyclic AMP greater than cyclic GMP. The renal membranes did bind cyclic GMP, but this binding was relatively non-specific. Hormones and drugs, that mediate cyclic AMP generation or renal function, as well as other compounds common to the proximal tubule were without significant effect on cyclic AMP binding. Binding was inhibited by sulfhydryl reacting agents and this inhibition could be blocked and partially reversed by mercaptoethanol.  相似文献   

17.
Summary In order to examine the possibility of parathyroid hormone-mediated ultrastructural rearrangements in target epithelium, isolated canine renal proximal tubular cells were grown on a collagen-coated semipermeable membrane in a defined medium. Scanning and transmission electron microscopy of these monolayers revealed abundant microvilli. Exposure of the proximal tubular cells to parathyroid hormone resulted in a biphasic changes involving: (1) dramatic shortening and rarefaction of microvilli within 1 min; and (2) recovery of microvillar topography after 5 min. A similar shortening of microvilli was observed following exposure to ionomycin, whereas incubation with cyclic AMP resulted in an elongation of microvilli. Parathyroid hormone stimulated cyclic AMP production and increased cytoplasmic free calcium concentration in cultured proximal tubular cells. Pretreatment of cells with a calmodulin inhibitor abolished the effect of parathyroid hormone on brush border topography. Shortening of microvilli was associated with a disappearance of microvillar core filaments. Staining of F-actin with fluoresceinphalloidin showed that parathyroid hormone resulted in fragmentation of stress fibers. It is concluded that parathyroid hormoneinduced cell activation involves cytoplasmic-free calcium, calmodulin, and the cytoskeleton.  相似文献   

18.
About 70% of the total mucosal enzymatic activity hydrolyzing beta-L-glutamyl-beta-naphthylamide in the rabbit small intestine is present in the brush border; the specific activity in this subcellular fraction is 7 times higher than that of the homogenate. Similar results are obtained for L-leucyl beta-naphthylamide hydrolase. The enzyme activity is efficiently solubilized by papain digestion and is clearly separated from L-leucyl-beta-naphthylamide hydrolase by chromatography on concanavalin A-Sepharose. It probably represents a digestive peptidase, different from the other known peptide hydrolases of the digestive surface of the small intestine.  相似文献   

19.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

20.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号