首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Increase in oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurodegenerative diseases including Alzheimer's disease. There is evidence for involvement of amyloid-β peptide (Aβ) in mediating the oxidative damage to neurons. Despite yet unknown mechanism, Aβ appears to exert action on the ionotropic glutamate receptors, especially the N-methyl-D-aspartic acid (NMDA) receptor subtypes. In this study, we showed that NMDA and oligomeric Aβ1–42 could induce reactive oxygen species (ROS) production from cortical neurons through activation of NADPH oxidase. ROS derived from NADPH oxidase led to activation of extracellular signal-regulated kinase 1/2, phosphorylation of cytosolic phospholipase A2α (cPLA2α), and arachidonic acid (AA) release. In addition, Aβ1–42-induced AA release was inhibited by d (−)-2-amino-5-phosphonopentanoic acid and memantine, two different NMDA receptor antagonists, suggesting action of Aβ through the NMDA receptor. Besides serving as a precursor for eicosanoids, AA is also regarded as a retrograde messenger and plays a role in modulating synaptic plasticity. Other phospholipase A2 products such as lysophospholipids can perturb membrane phospholipids. These results suggest an oxidative-degradative mechanism for oligomeric Aβ1–42 to induce ROS production and stimulate AA release through the NMDA receptors. This novel mechanism may contribute to the oxidative stress hypothesis and synaptic failure that underline the pathogenesis of Alzheimer's disease.  相似文献   

2.
The mechanism of the effect of docosahexaenoic acid (DHA; C22:6, n -3), one of the essential brain nutrients, on in vitro fibrillation of amyloid β (Aβ1–42), Aβ1–42-oligomers and its toxicity imparted to SH-S5Y5 cells was studied with the use of thioflavin T fluorospectroscopy, laser confocal microfluorescence, and transmission electron microscopy. The results clearly indicated that DHA inhibited Aβ1–42-fibrill formation with a concomitant reduction in the levels of soluble Aβ1–42 oligomers. The polymerization (into fibrils) of preformed oligomers treated with DHA was inhibited, indicating that DHA not only obstructs their formation but also inhibits their transformation into fibrils. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (12.5%), Tris–Tricine gradient(4–20%) gel electrophoresis and western blot analyses revealed that DHA inhibited at least 2 species of Aβ1–42 oligomers of 15–20 kDa, indicating that it hinders these on-pathway tri/tetrameric intermediates during fibrillation. DHA also reduced the levels of dityrosine and tyrosine intrinsic fluorescence intensity, indicating DHA interrupts the microenvironment of tyrosine in the Aβ1–42 backbone. Furthermore, DHA protected the tyrosine from acrylamide collisional quenching, as indicated by decreases in Stern–Volmer constants. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide-reduction efficiency and immunohistochemical examination suggested that DHA inhibits Aβ1–42-induced toxicity in SH-S5Y5 cells. Taken together, these data suggest that by restraining Aβ1–42 toxic tri/tetrameric oligomers, DHA may limit amyloidogenic neurodegenerative diseases, Alzheimer's disease.  相似文献   

3.
Abstract: Amyloid β protein (Aβ) deposition in the cerebral arterial and capillary walls is one of the major characteristics of brains from patients with Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Vascular Aβ deposition is accompanied by degeneration of smooth muscle cells and pericytes. In this study we found that Aβ1–40 carrying the "Dutch" mutation (HCHWA-D Aβ1–40) as well as wild-type Aβ1–42 induced degeneration of cultured human brain pericytes and human leptomeningeal smooth muscle cells, whereas wild-type Aβ1–40 and HCHWA-D Aβ1–42 were inactive. Cultured brain pericytes appeared to be much more vulnerable to Aβ-induced degeneration than leptomeningeal smooth muscle cells, because in brain pericyte cultures cell viability already decreased after 2 days of exposure to HCHWA-D Aβ1–40, whereas in leptomeningeal smooth muscle cell cultures cell death was prominent only after 4–5 days. Moreover, leptomeningeal smooth muscle cell cultures were better able to recover than brain pericyte cultures after short-term treatment with HCHWA-D Aβ1–40. Degeneration of either cell type was preceded by an increased production of cellular amyloid precursor protein. Both cell death and amyloid precursor protein production could be inhibited by the amyloid-binding dye Congo red, suggesting that fibril assembly of Aβ is crucial for initiating its destructive effects. These data imply an important role for Aβ in inducing perivascular cell pathology as observed in the cerebral vasculature of patients with Alzheimer's disease or HCHWA-D.  相似文献   

4.
Abstract: The frequency of the ε4 allele of apolipoprotein E(apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to β-amyloid (Aβ) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and Aβ in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of Aβ peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic Aβ peptides, in particular Aβ1–42, Aβ1–40, and Aβ25–35, increase significantly apoE-liposome binding to hippocampal neurons. For each Aβ peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the Aβ peptides to increase apoE binding, Aβ25–35, was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, Aβ1–40 uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that Aβ peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.  相似文献   

5.
Abstract: β-Amyloid peptides (Aβ) are deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease. The neurotoxicity of Aβ in cultured neurons is dependent on its aggregation state, but the factors contributing to aggregation and fibril formation are poorly understood. In the present study, we investigated whether α2-macroglobulin (α2M), a protein present in neuritic plaques and elevated in Alzheimer's disease brain, is a potential regulatory factor for Aβ fibril formation. Previous studies in our laboratory have shown that α2M is an Aβ binding protein. We now report that, in contrast to another plaque-associated protein, α1-antichymotrypsin, α2M coincubated with Aβ significantly reduces aggregation and fibril formation in vitro. Additionally, cultured fetal rat cortical neurons are less vulnerable to the toxic actions of aged Aβ following pretreatment with α2M. We postulate that α2M is able to maintain Aβ in a soluble state, preventing fibril formation and associated neurotoxicity.  相似文献   

6.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

7.
Aggregation of amyloid-β (Aβ) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Aβ aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Aβ42 fibrillization and initiate formation of non-fibrillar Aβ42 aggregates, and that the inhibitory effect of Zn(II) (IC50 = 1.8 μmol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Aβ42 aggregation. Moreover, their addition to preformed aggregates initiated fast Aβ42 fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Aβ42. H13A and H14A mutations in Aβ42 reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-β core structure within region 10–23 of the amyloid fibril. Cu(II)-Aβ42 aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Aβ42 aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Aβ aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.  相似文献   

8.
Abstract: Cerebrovascular amyloid β-protein (Aβ) deposition is a key pathological feature of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Aβ1–40 containing the E22Q HCHWA-D mutation, but not wild-type Aβ1–40, potently induces several pathologic responses in cultured human cerebrovascular smooth muscle cells, including cellular degeneration and a robust increase in the levels of cellular Aβ precursor. In the present study, we show by several quantitative criteria, including thioflavin T fluorescence binding, circular dichroism spectroscopy, and transmission electron microscopic analysis, that at a concentration of 25 µ M neither HCHWA-D Aβ1–40 nor wild-type Aβ1–40 appreciably assembles into β-pleated sheet-containing fibrils in solution over a 6-day incubation period. In contrast, at the same concentrations, HCHWA-D Aβ1–40, but not wild-type Aβ1–40, selectively binds and assembles into abundant fibrils on the surfaces of cultured human cerebrovascular smooth muscle cells. The simultaneous addition of an equimolar concentration of the dye Congo red prevents the cell surface fibril assembly of HCHWA-D Aβ1–40. Moreover, Congo red effectively blocks the key pathologic responses induced by HCHWA-D Aβ1–40 in these cells. The present findings suggest that the surface of human cerebrovascular smooth muscle cells may selectively orchestrate the assembly of pathogenic Aβ fibrils and that cell surface Aβ fibril formation plays an important role in causing the pathologic responses in these cells.  相似文献   

9.
Abstract: Recent evidence suggests that β-amyloid peptide (β-AP) may induce tau protein phosphorylation, resulting in loss of microtubule binding capacity and formation of paired helical filaments. The mechanism by which β-AP increases tau phosphorylation, however, is unclear. Using a hybrid septal cell line, SN56, we demonstrate that aggregated β-AP1–40 treatment caused cell injury. Accompanying the cell injury, the levels of phosphorylated tau as well as total tau were enhanced as detected immunochemically by AT8, PHF-1, Tau-1, and Tau-5 antibodies. Alkaline phosphatase treatment abolished AT8 and PHF-1 immunoreactivity, confirming that the tau phosphorylation sites were at least at Ser199/202 and Ser396. In association with the increase in tau phosphorylation, the immunoreactivity of cell-associated and secreted β-amyloid precursor protein (β-APP) was markedly elevated. Application of antisense oligonucleotide to β-APP reduced expression of β-APP and immunoreactivity of phosphorylated tau. Control peptide β-AP1–28 did not produce significant effects on tau phosphorylation, although it slightly increased cell-associated β-APP. These results suggest that βAP1–40-induced tau phosphorylation may be associated with increased β-APP expression in degenerated neurons.  相似文献   

10.
F-spondin is associated with the regulation of axonal growth and the development of the nervous system. Its mechanism of action, however, is not clearly understood. In this study, we found that murine neuroblastoma Neuro-2a cells expressed a significant level of IL-6, but only trace amounts of IL-12, tumor necrosis factor α and nitric oxide. Knock-down of F-spondin mRNA in murine neuroblastoma NB41A3 and Neuro-2a cells using small interfering RNAs led to decreased IL-6 levels along with lower resistance to serum starvation and cytotoxic amyloid β1–42 (Aβ1–42) peptide. Restoring decline of F-spondin or IL-6 induced by F-spondin knock-down through adding exogenous F-spondin, IL-6 or over-expressing F-spondin reversed the cell death induced by Aβ1–42 peptide or serum starvation. The decrease of IL-6 level was positively correlated with decrease of NF-κB and inhibition of p38 mitogen-activated protein kinase (MAPK). Over-expressing MEKK, a kinase activator of the p38 MAPK pathway, increased IL-6 production, restored the decrease of p38 induced by F-spondin knock-down, and rescued the cells from death caused by Aβ1–42 peptide. Taken together, these results suggest that F-spondin may play a critical role in murine neuroblastoma survival under adverse conditions by maintaining IL-6 level via a MEKK/p38 MAPK/NF-κB-dependent pathway.  相似文献   

11.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40. The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD.  相似文献   

12.
Administration of small oligomeric β-amyloid (Aβ)1–42 45 min before one-trial bead discrimination learning in day-old chicks abolishes consolidation of learning 30 min post-training (Gibbs et al. Neurobiol. Aging , in press). Administration of the β3-adrenergic agonist CL316243, which specifically stimulates astrocytic but not neuronal glucose uptake, rescues Aβ impaired memory. Weakly reinforced training can be consolidated by various metabolic substrates and we have demonstrated neuronal dependence on oxidative metabolism of glucose soon after training versus astrocytic glucose dependence 20 min later. Based on these findings we examined whether different metabolic substrates were able to counteract memory inhibition by Aβ1–42. Although lactate, the medium-chain fatty acid octanoate, and the ketone body β-hydroxybutyrate consolidated weakly reinforced training when injected close to learning, none of them were able to salvage Aβ-impaired memory; at this early time. All three metabolites and the astrocytic-specific acetate consolidated weak learning and rescued Aβ-impaired memory when injected 10–20 min post-training. However, neither glucose nor insulin rescued memory when injected at 20 min. Rescue of memory by providing astrocytes with alternative substrates for oxidative metabolism suggests that Aβ1–42 exerts its amnestic effects specifically by impairing astrocytic glycolysis.  相似文献   

13.
Abstract: A primary histopathological feature of Alzheimer's disease is the accumulation of β-amyloid (Aβ) in the brain of afflicted individuals. However, Aβ is produced continuously as a soluble protein in healthy individuals where it is detected in serum and CSF, suggesting the existence of cellular clearance mechanisms that normally prevent its accumulation and aggregation. Here, we demonstrate that Aβ forms stable complexes with activated α2-macroglobulin (α2M), a physiological ligand for the low-density lipoprotein receptor-related protein (LRP) that is abundantly expressed in the CNS. These α2M/125I-Aβ complexes are immunoreactive with both anti-Aβ and anti-α2M IgG and are stable under various pH conditions, sodium dodecyl sulfate, reducing agents, and boiling. We demonstrate that α2M/125I-Aβ complexes can be degraded by glioblastoma cells and fibroblasts via LRP, because degradation is partially inhibited by receptor-associated protein (RAP), an antagonist of ligand interactions with LRP. In contrast, the degradation of free 125I-Aβ is not inhibited by RAP and thus must be mediated via an LRP-independent pathway. These results suggest that LRP can function as a clearance receptor for Aβ via a physiological ligand.  相似文献   

14.
Abstract: Amyloid β-peptides (Aβ) may alter the neuronal membrane lipid environment by changing fluidity and inducing free radical lipid peroxidation. The effects of Aβ1–40 and Aβ25–35 on the fluidity of lipids adjacent to proteins (annular fluidity), bulk lipid fluidity, and lipid peroxidation were determined in rat synaptic plasma membranes (SPM). A fluorescent method based on radiationless energy transfer from tryptophan of SPM proteins to pyrene and pyrene monomer-eximer formation was used to determine SPM annular fluidity and bulk fluidity, respectively. Lipid peroxidation was determined by the thiobarbituric acid assay. Annular fluidity and bulk fluidity of SPM were increased significantly ( p ≤ 0.02) by Aβ1–40. Similar effects on fluidity were observed for Aβ25–35 ( p ≤ 0.002). Increased fluidity was associated with lipid peroxidation. Both Aβ peptides significantly increased ( p ≤ 0.006) the amount of malondialdehyde in SPM. The addition of a water-soluble analogue of vitamin E (Trolox) inhibited effects of Aβ on lipid peroxidation and fluidity in SPM. The fluidizing action of Aβ peptides on SPM may be due to the induction of lipid peroxidation by those peptides. Aβ-induced changes in neuronal function, such as ion flux and enzyme activity, that have been reported previously may result from the combined effects of lipid peroxidation and increased membrane fluidity.  相似文献   

15.
The deposition of amyloid β (Aβ) protein is a consistent pathological hallmark of Alzheimer's disease (AD) brains; therefore, inhibition of Aβ fibril formation and destabilization of pre-formed Aβ fibrils is an attractive therapeutic and preventive strategy in the development of disease-modifying drugs for AD. This study demonstrated that Paeonia suffruticosa , a traditional medicinal herb, not only inhibited fibril formation of both Aβ1–40 and Aβ1–42 but it also destabilized pre-formed Aβ fibrils in a concentration-dependent manner. Memory function was examined using the passive-avoidance task followed by measurement of Aβ burden in the brains of Tg2576 transgenic mice. The herb improved long-term memory impairment in the transgenic mice and inhibited the accumulation of Aβ in the brain. Three-dimensional HPLC analysis revealed that a water extract of the herb contained several different chemical compounds including 1,2,3,4,6-penta- O -galloyl-β- d -glucopyranose (PGG). No obvious adverse/toxic were found following treatment with PGG. As was observed with Paeonia suffruticosa , PGG alone inhibited Aβ fibril formation and destabilized pre-formed Aβ fibrils in vitro and in vivo . Our results suggest that both Paeonia suffruticosa and its active constituent PGG have strong inhibitory effects on formation of Aβ fibrils in vitro and in vivo . PGG is likely to be a safe and promising lead compound in the development of disease-modifying drugs to prevent and/or cure AD.  相似文献   

16.
Abstract: β-Amyloid peptide (Aβ), a proteolytic fragment of the β-amyloid precursor protein, is a major component of senile plaques in the brain of Alzheimer's disease patients. This neuropathological feature is accompanied by increased neuronal cell loss in the brain and there is evidence that Aβ is directly neurotoxic. In the present study reduced cell viability in four different neuroblastoma cell types was observed after treatment with human Aβ1–42 for 1 day. Of the cell types tested rat PC12 and human IMR32 cells were most susceptible to Aβ toxicity. Chromosomal condensation and fragmentation of nuclei were seen in PC12, NB2a, and B104 cells but not in IMR32 cells irrespective of their high sensitivity to Aβ. Electrophoretic analysis of cellular DNA confirmed internucleosomal DNA fragmentation typical for apoptosis in all cell types except IMR32. These findings suggest that the form of Aβ-induced cell death (necrosis or apoptosis) may depend on the cell type.  相似文献   

17.
Calcium/calmodulin-dependent kinase II (CaMKII) facilitates L-type calcium channel (LTCC) activity physiologically, but may exacerbate LTCC-dependent pathophysiology. We previously showed that CaMKII forms stable complexes with voltage-gated calcium channel (VGCC) β1b or β2a subunits, but not with the β3 or β4 subunits ( Grueter et al. 2008 ). CaMKII-dependent facilitation of CaV1.2 LTCCs requires Thr498 phosphorylation in the β2a subunit ( Grueter et al. 2006 ), but the relationship of this modulation to CaMKII interactions with LTCC subunits is unknown. Here we show that CaMKII co-immunoprecipitates with forebrain LTCCs that contain CaV1.2α1 and β1 or β2 subunits, but is not detected in LTCC complexes containing β4 subunits. CaMKIIα can be specifically tethered to the I/II linker of CaV1.2 α1 subunits in vitro by the β1b or β2a subunits. Efficient targeting of CaMKIIα to the full-length CaV1.2α1 subunit in transfected HEK293 cells requires CaMKII binding to the β2a subunit. Moreover, disruption of CaMKII binding substantially reduced phosphorylation of β2a at Thr498 within the LTCC complex, without altering overall phosphorylation of CaV1.2α1 and β subunits. These findings demonstrate a biochemical mechanism underlying LTCC facilitation by CaMKII.  相似文献   

18.
19.
Abstract: Cerebral capillary sequestration and blood-brain barrier (BBB) permeability to apolipoproteins E2 (apoE2), E3 (apoE3), and E4 (apoE4) and to their complexes with sAβ1–40, a peptide homologous to the major form of soluble Alzheimer's amyloid β, were studied in perfused guinea pig brain. Cerebrovascular uptake of three apoE isoforms was low, their blood-to-brain transport undetectable, but uptake by the choroid plexus significant. Binding of all three isoforms to sAβ1–40 in vitro was similar with a K D between 11.8 and 12.9 n M . Transport into brain parenchyma and sequestration by BBB and choroid plexus were negligible for sAβ1–40-apoE2 and sAβ1–40-apoE3, but significant for sAβ1–40-apoE4. After 10 min, 85% of sAβ1–40-apoE4 taken up at the BBB remained as intact complex, whereas free sAβ1–40 was 51% degraded. Circulating apoE isoforms have contrasting effects on cerebral capillary uptake of and BBB permeability of sAβ. ApoE2 and apoE3 completely prevent cerebral capillary sequestration and blood-to-brain transport of sAβ1–40. Conversely, apoE4, by entering brain microvessels and parenchyma as a stable complex with sAβ, reduces peptide degradation and may predispose to cerebrovascular and possibly enhance parenchymal amyloid formation under pathological conditions.  相似文献   

20.
Abstract: One of the characteristic changes that occurs in Alzheimer's disease is the loss of acetylcholinesterase (AChE) from both cholinergic and noncholinergic neurons of the brain. However, AChE activity is increased around amyloid plaques. This increase in AChE may be of significance for therapeutic strategies using AChE inhibitors. The aim of this study was to examine the effect of amyloid β-protein (Aβ), the major component of amyloid plaques, on AChE expression. Aβ peptides spanning residues 1–40 or 25–35 increased AChE activity in P19 embryonal carcinoma cells. A peptide containing a scrambled Aβ25–35 sequence did not stimulate AChE expression. To examine the possibility that the increase in AChE expression was mediated by an influx of calcium through voltage-dependent calcium channels (VDCCs), drugs acting on VDCCs were tested for their effects. Inhibitors of L-type VDCCs (diltiazem, nifedipine, and verapamil), but not N- or P- or Q-type VDCCs, resulted in a decrease in AChE expression. Agonists of L-type VDCCs (maitotoxin and S (−)-Bay K 8644) increased AChE expression. As L-type VDCCs are known to be modulated by cyclic AMP-dependent protein kinase, the effect of the adenylate cyclase activator forskolin was also examined. Forskolin stimulated AChE expression, an action that was blocked by the L-type VDCC antagonist nifedipine. The Aβ25–35-induced increase in AChE expression was mediated by an L-type VDCC, as the effect was also blocked by nifedipine. The results suggest that the increase in AChE expression around amyloid plaques could be due to a disturbance in calcium homeostasis involving the opening of L-type VDCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号