首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Cations were precipitated with potassium antimonate in ovarian follicles of Drosophila and the distribution of the formed precipitates was studied. The precipitates were analyzed with a laser microprobe mass analyzer (LAMMA) and found to contain a high concentration of calcium; potassium and sodium were also detected. On counting the antimon precipitates in stage 10B follicles with the electron microscope, few precipitates per unit area were found in anterior nurse cells, but more in posterior nurse cells; the highest precipitate density occurred consistently in the oocyte. When follicles of different stages were compared, the precipitate density was found to increase in the ooplasm and in the posterior nurse cells during vitellogenesis, whereas it remained nearly constant in the anterior nurse cells. Thus, the ratio of precipitates between the posterior and anterior end of the follicle increases during vitellogenesis. It begins to decrease at the time when the nurse cells collapse. These results suggest that the electrical polarity observed in polytrophic ovarioles may be based on differences in the cation distribution along the antero-posterior axis of the follicle.  相似文献   

2.
The size of an organism is of fundamental importance in all biological processes. It dictates many of the critical interactions and physical factors that delimit the envelope within which an organism can grow. We investigated the effects of reduced oxygen on size and development in the fruit fly Drosophila melanogaster, and showed that limiting the oxygen in the environment limits both whole animal and cell size. When oxygen levels were reduced from 20% in nitrogen to 15%, 10% and 7.5%, there was a linear decrease in both male and female mass. Both cell size and cell number decreased in low oxygen, but changes in cell size accounted for a larger proportion of the overall change in fly size. Cell numbers decreased by a maximum of 11% between flies reared in 20% oxygen and those reared in 7.5% oxygen, whereas cell surface area decreased by 17%. Low oxygen levels increased development time and mortality, but reduced fecundity. Reducing the level of oxygen available significantly slowed development times, with flies reared in 10% oxygen emerging on average 1.5 days later than those in 20% oxygen. The effect of oxygen on size is reversible during embryonic and larval development up to the pupal stage, when final size is set.  相似文献   

3.
4.

Background

Insect repellents are prophylactic tools against a number of vector-bornediseases. There is growing demand for repellents outperforming DEET in costand safety, but with the current technologies R&D of a new product takesalmost 10 years, with a prohibitive cost of $30 million dollar inpart due to the demand for large-scale synthesis of thousands of testcompounds of which only 1 may reach the market. R&D could be expeditedand cost dramatically reduced with a molecular/physiological target tostreamline putative repellents for final efficacy and toxicologicaltests.

Methodology

Using olfactory-based choice assay we show here that the fruit fly isrepelled by not only DEET, but also IR3535 and picaridin thus suggestingthey might have “generic repellent detector(s),” which may be ofpractical applications in new repellent screenings. We performed single unitrecordings from all olfactory sensilla in the antennae and maxillary palps.Although the ab3A neuron in the wild type flies responded to picaridin, itwas unresponsive to DEET and IR3535. By contrast, a neuron housed in thepalp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, withapparent sensitivity higher than that of the DEET detectors in themosquitoes Culex quinquefasciatus and Aedesaegypti. DmOr42a was transplanted from pb1 to the “emptyneuron” and showed to be sensitive to the three insect repellents.

Conclusions

For the first time we have demonstrated that the fruit fly avoids not onlyDEET but also IR3535 and picaridin, and identified an olfactory receptorneuron (ORN), which is sensitive to these three major insect repellents. Wehave also identified the insect repellent-sensitive receptor, DmOr42a. Thisgeneric detector fulfils the requirements for a simplified bioassay forearly screening of test insect repellents.  相似文献   

5.
To gain insight into how temperature affects locomotor performance in insects, the limits of flight performance have been estimated in freely flying fruit flies Drosophila melanogaster by determining the maximum load that a fly could carry following take-off. At a low ambient temperature of 15 °C, muscle mechanical power output matches the minimum power requirements for hovering flight. Aerodynamic force production rises with increasing temperature and eventually saturates at a flight force that is roughly equal to 2.1 times the body mass. Within the two-fold range of different body sizes, maximum flight force production during free flight does not decrease with decreasing body size as suggested by standard aerodynamic theories. Estimations of flight muscle mechanical power output yields a peak performance of 110 W kg−1 muscle tissue for short-burst flight that was measured at an ambient temperature of 30 °C. With respect to the uncertainties in estimating muscle mechanical power during free flight, the estimated values are similar to those that were published for flight under tethered flight conditions. Accepted: 5 January 1999  相似文献   

6.
Flies display a sophisticated suite of aerial behaviours that require rapid sensory-motor processing. Like all insects, flight control in flies is mediated in part by motion-sensitive visual interneurons that project to steering motor circuitry within the thorax. Flies, however, possess a unique flight control equilibrium sense that is encoded by mechanoreceptors at the base of the halteres, small dumb-bell-shaped organs derived through evolutionary transformation of the hind wings. To study the input of the haltere system onto the flight control system, I constructed a mechanically oscillating flight arena consisting of a cylindrical array of light-emitting diodes that generated the moving image of a 30 degrees vertical stripe. The arena provided closed-loop visual feedback to elicit fixation behaviour, an orientation response in which flies maintain the position of the stripe in the front portion of their visual field by actively adjusting their wing kinematics. While flies orientate towards the stripe, the entire arena was swung back and forth while an optoelectronic device recorded the compensatory changes in wing stroke amplitude and frequency. In order to reduce the background changes in stroke kinematics resulting from the animal's closed-loop visual fixation behaviour, the responses to eight identical mechanical rotations were averaged in each trial. The results indicate that flies possess a robust equilibrium reflex in which angular rotations of the body elicit compensatory changes in both the amplitude and stroke frequency of the wings. The results of uni- and bilateral ablation experiments demonstrate that the halteres are required for these stability reflexes. The results also confirm that halteres encode angular velocity of the body by detecting the Coriolis forces that result from the linear motion of the haltere within the rotating frame of reference of the fly's thorax. By rotating the flight arena at different orientations, it was possible to construct a complete directional tuning map of the haltere-mediated reflexes. The directional tuning of the reflex is quite linear such that the kinematic responses vary as simple trigonometric functions of stimulus orientation. The reflexes function primarily to stabilize pitch and yaw within the horizontal plane.  相似文献   

7.
Theory predicts that males will benefit when they bias their mating effort towards females of higher reproductive potential, and that this discrimination will increase as males become more resource limited. We conducted a series of experiments to test these predictions in a laboratory population of the fruitfly, Drosophila melanogaster. In this species, courtship and copulation have significant costs to males, and females vary greatly in fecundity, which is positively associated with body size. When given a simultaneous choice between small and large virgin females, males preferentially mated with larger, more fecund, females. Moreover, after males had recently mated they showed a stronger preference for larger females. These results suggest that male D. melanogaster adaptively allocate their mating effort in response to variation in female quality and provide some of the first support for the theoretical prediction that male stringency in mate choice increases as resources become more limiting.  相似文献   

8.
Photoreceptor cells that were mostly free of extracellular material and suitable for most electrophysiological study procedures were dissociated from whole heads of the fruit fly, Drosophila melanogaster, by a simple smash technique employing gentle chopping by a razor blade through Parafilm sheets. A variety of commonly available proteolytic and glycolytic digestion enzymes were tested as additions to the basic dissociation procedure described. With the aid of Nomarski interference contrast optics, periodic acid-Schiff staining, and fluorescent labeling and microscopy methods, it was determined that proteolytic enzymatic digestion does little to enhance the dissociation procedure, and instead, often damages the cells that one is attempting to recover. Unexpectedly, certain glycolytic enzymes, when added to the basic procedure, appear to enhance the recovery of intact viable Drosophila photoreceptors that are stripped of most extracellular material. Based on these results, a hypothesis concerning the biochemical nature of the extracellular matrix of the Drosophila retina is proposed. Drosophila photoreceptors are an interesting model system for the study of invertebrate phototransduction and photoreceptor cell biology because of their many well-characterized mutant strains. The technique described here should produce clean viable photoreceptors or ommatidia that respond to light, and that are suitable for patch clamping or cell culture.  相似文献   

9.
In the fruit fly Drosophila melanogaster, social interactions especially among heterosexual couples have been shown to have significant impact on the circadian timing system. Olfaction plays a major role in such interactions; however, we do not know yet specifically which receptor(s) are involved. Further, the role of circadian clock neurons in the rhythmic regulation of such sociosexual interactions (SSIs) is not fully understood. Here, we report the results of our study in which we assayed the locomotor activity and sleep-wake behaviors of male-male (MM), female-female (FF), and male-female (MF) couples from several wild-type and mutant strains of Drosophila with an aim to identify specific olfactory receptor(s) and circadian clock neurons involved in the rhythmic regulation of SSI. The results indicate that Or47b receptor neurons are necessary for SSI, as ablation or silencing of these neurons has a severe impact on SSI. Further, the neuropeptide pigment dispersing factor (PDF) and PDF-positive ventral lateral (LN(v)) clock neurons appear to be dispensable for the regulation of SSI; however, dorsal neurons may be involved.  相似文献   

10.
11.
Adaptative responses of ectothermic organisms to thermal variation typically involve the reorganization of membrane glycerophospholipids (GPLs) to maintain membrane function. We investigated how acclimation at 15, 20 and 25 degrees C during preimaginal development influences the thermal tolerance and the composition of membrane GPLs in adult Drosophila melanogaster. Long-term cold survival was significantly improved by low acclimation temperature. After 60 h at 0 degrees C, more than 80% of the 15 degrees C-acclimated flies survived while none of the 25 degrees C-acclimated flies survived. Cold shock tolerance (1h at subzero temperatures) was also slightly better in the cold acclimated flies. LT50 shifted down by ca 1.5 degrees C in 15 degrees C-acclimated flies in comparison to those acclimated at 25 degrees C. In contrast, heat tolerance was not influenced by acclimation temperature. Low temperature acclimation was associated with the increase in proportion of ethanolamine (from 52.7% to 58.5% in 25 degrees C-acclimated versus 15 degrees C-acclimated flies, respectively) at the expense of choline in GPLs. Relatively small, but statistically significant changes in lipid molecular composition were observed with decreasing acclimation temperature. In particular, the proportions of glycerophosphoethanolamines with linoleic acid (18:2) at the sn-2 position increased. No overall change in the degree of fatty acid unsaturation was observed. Thus, cold tolerance but not heat tolerance was influenced by preimaginal acclimation temperature and correlated with the changes in GPL composition in membranes of adult D. melanogaster.  相似文献   

12.
The amino acid sequences of cytochromes c purified from the fruit fly Drosophila melanogaster and the flesh fly Boettcherisca peregrina were determined. In contrast with the case of the housefly, isocytochromes c were not detected in these flies at any developmental stage. The sequence of fruit fly cytochrome c differed from that reported previously but was identical with that predicted from the nucleotide sequence of the fruit fly cytochrome c gene (DC4) (Limbach, K.J. & Wu, R. (1985) Nucl. Acids Res. 13, 631-644). Isocytochrome c of the fruit fly, reported to be encoded by the DC3 gene, was not detected as a functional cytochrome c molecule.  相似文献   

13.
Neocalceostomoides brisbanensis sp. nov. from the gill arches, gill rakers and buccal lining of the blue catfish, Arius graeffei , is described. It is distinguished from the type species Neocalceostomoides arii (Unnithan, 1964) by the presence of a convoluted vas deferens with a blind-ending diverticulum; two lobes inside the vagina, each with ornamentation comprising rows of conical studs; two seminal receptacles and a post-testicular connection between the gut caeca. There is a closer resemblance to Neocalceostomoides spinivaginalis Lim, 1995, which also has vaginal lobes with ornamentations, but in N. spinivaginalis these ornamentations are elongated and spine-like and the penis tube and 'gubernaculum' are significantly longer. Neocalceostomoides brisbanensis was found on A. graeffei caught in Moreton Bay (sea water), Queensland, but not on catfish caught in the Brisbane River (fresh water). Some comments are made on the evolution and relationships of calceostomatines.  相似文献   

14.
Models for infectious diseases   总被引:2,自引:0,他引:2  
  相似文献   

15.
Insects are capable of detecting, and discriminating between, a very large number of odours. The biological relevance of many of those odours, particularly those related to food, must first be learned. Given that the number of sensory receptors and antennal lobe (AL) glomeruli is limited relative to the number of odours that must be detectable, this ability implies that the olfactory system makes use of a combinatorial coding scheme whereby each sensory cell or AL projection neuron can participate in coding for several different odours. An important step in understanding this coding scheme is to behaviourally quantify the degree to which sets of odours are discriminable. Here we evaluate odour discriminability in the fruit fly,Drosophila melanogaster, by first conditioning individual flies to not respond to any of several odourants using a nonassociative conditioning protocol (habituation). We show that flies habituate unconditioned leg movement responses to both mechanosensory and olfactory stimulation over 25 unreinforceed trials. Habituation is retained for at least 2 h and is subject to dishabituation. Finally, we test the degree to which the conditioned response generalizes to other odourants based on molecular features of the odourants (e.g. carbon chain length and the presence of a target functional group). These tests reveal predictable generalization gradients across these molecular features. These data substantiate the claim that these features are relevant coding dimensions in the fruit fly olfactory system, as has been shown for other insect and vertebrate species.  相似文献   

16.
The circadian clock of Drosophila melanogaster is thought to include rhythmic expression of period gene. Recent studies suggested, however, that a per-less oscillation is also involved in the regulation of circadian locomotor rhythms. In the present study, we examined the existence and the property of the possible per-less oscillation using arrhythmic clock mutant flies carrying per (01), tim(01), dClk(Jrk) or cyc(01), which lack rhythmic per expression. When temperature cycles consisting of 25 degrees C and 30 degrees C with various periods (T=8-32 hr) were given, wild-type (Canton-S) flies showed locomotor rhythms entrained to temperature cycles over a wide range of period (T=8-32 hr) in constant light (LL) while only to T=24 hr in constant darkness (DD). The mutant flies showed rhythms synchronizing with the given cycle both under LL and DD. In per(01) and tim(01) flies, the phase of a major peak slightly changed dependent on Ts in DD, while it did not in dClk(Jrk) and cyc(01) flies. When they were transferred from a constant temperature to a temperature cycle under DD, several cycles were necessary to establish a clear temperature entrainment in per(01) and tim (01) flies. These results suggest that per(01) and tim(01) flies have a temperature-entrainable weak oscillatory mechanism and that the per-less oscillatory mechanism may require dClk and cyc. In addition, per (01) and tim(01) flies changed from thermoactive in DD to cryoactive in LL, while dClk(Jrk) and cyc(01) flies did not. It is thus suggested that dClk and cyc are also involved in determining the light-associated temperature preference in per(01) and tim(01) flies.  相似文献   

17.
Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes.  相似文献   

18.
Metamorphosis is a fundamental developmental process and has been intensively studied for various neuron types of Drosophila melanogaster. However, detailed accounts of the fate of identified peptidergic neurons are rare. We have performed a detailed study of the larval morphology and pupal remodelling of identified peptidergic neurons, the CAPA-expressing Va neurons of D. melanogaster. In the larva, Va neurons innervate abdominal median and transverse nerves that are typically associated with perisympathetic organs (PSOs), major neurohaemal release sites in insects. Since median and transverse nerves are lacking in the adult, Va neurites have to undergo substantial remodelling during metamorphosis. We have examined the hitherto uncharacterised gross morphology of the thoracic PSOs and the abdominal median and transverse nerves by scanning electron microscopy and found that the complete reduction of these structures during metamorphosis starts around pupal stage P7 and is completed at P9. Concomitantly, neurite pruning of the Va neurons begins at P6 and is preceded by the high expression of the ecdysone receptor (EcR) subtype B1 in late L3 larvae and the first pupal stages. New neuritic outgrowth mainly occurs from P7-P9 and coincides with the expression of EcR-A, indicating that the remodelling of the Va neurons is under ecdysteroid control. Immunogold-labelling has located the CAPA peptides to large translucent vesicles, which are released from the transverse nerves, as suggested by fusion profiles. Hence, the transverse nerves may serve a neurohaemal function in D. melanogaster.This work was supported by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG), grant We 2652/2-1.  相似文献   

19.
《Fly》2013,7(4):312-319
Folic acid is a vitamin for probably all animals. When converted to folate forms, it is used in DNA synthesis and amino acid metabolism. Literature suggests insects must consume folates, folates do not affect others, is a toxin for some, and that a few insects synthesize it. It has been reported that Drosophila melanogaster does not consistently need dietary folate because it can synthesize it. This seems unlikely since animals generally lack this ability. More likely, folates thought to have been made by the fly came from microbial symbionts. We aimed to clarify how dietary folic acid affects fitness and development in fruit flies and whether flies may receive folates from microbial symbionts. We found larvae were more viable and developed faster with increasing dietary folic acid, with the surprising exception that larvae fed nearly-zero folic acid developed faster. Their body folate levels did not significantly differ from those that consumed up to 600 times more folic acid. However, these flies fed little folate only achieved normal body folate levels and development times when antibiotics were excluded from the diet. When flies consumed near-zero folates with antibiotics, their body folate levels decreased and development was prolonged. An assay for the endosymbiont Wolbachia in flies used to generate the experimental flies did not show presence of these bacteria. Our data suggest D. melanogaster can harbor unknown bacterial symbiont(s) that provide essential folates to their host when it is scarce in the diet, allowing the fruit fly to maintain growth and development.  相似文献   

20.
Summary Movement-induced visual orientation in flies depends largely upon predictable responses which establish simple optomotor balance or complex pseudo search in the appropriate visual environment. Less conspicuous course diverting spontaneous actions of the flies become important in pattern-induced visual orientation. The apparently stochastic spontaneous actions of the houseflyMusca domestica still allow powerful probabilistic predictions of orientation during stationary flight (Reichardt and Poggio 1981). The predominance of non-stochastic spontaneous actions such as body saccades, focussing and shift of visual attention, plasticity of response components etc. in the fruitflyDrosophila melanogaster (Heisenberg and Wolf 1979–1980) accounts for complementary behavioural options which reduce the relevance of probabilistic predictions of orientation in this fly.The conjecture of complementary options is based on a striking antagonism between orientation towards a visual object (fixation), and orientation in the opposite direction (anti-fixation), in the walking fly. Forced choice in a multiple-Y-maze quite definitely elicits fixation in the wild type, and antifixation in the optomotor blind mutantomb H31 (Fig. 3). However, these effects cannot be attributed to a continuous predominance of attraction in the wild type and repellence in the mutant. This is shown under comparable conditions of free choice in an arena: The flies of either strain alternate between fixation and anti-fixation of an inaccessible visual object (Fig. 4a), and keep running to and fro between two of these objects in Buridan's paradigm (Fig. 4b, c), even if the objects are not alike (Fig. 4d). The sequence of approach, retreat and transition may be repeated a few thousand times to the point of exhaustion (Fig. 5). The process resembles the recurrent alternation of ambiguous figures such as the Necker cube in human perception. The recurrent transition between competitive objects counteracts the accumulation of spontaneous preferences, and is likely to explain the apparent lack of pattern-discrimination under operant and non-operant conditions of continued free choice inDrosophila. The conspicuous dichotomy of fixation and anti-fixation in the same environment is, as yet, incompatible with the phenomenological theory of visually controlled orientation in larger flies.Abbreviation S.E.M. standard error of the mean  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号