首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Background  

While most multiple sequence alignment programs expect that all or most of their input is known to be homologous, and penalise insertions and deletions, this is not a reasonable assumption for non-coding DNA, which is much less strongly conserved than protein-coding genes. Arguing that the goal of sequence alignment should be the detection of homology and not similarity, we incorporate an evolutionary model into a previously published multiple sequence alignment program for non-coding DNA, Sigma, as a sensitive likelihood-based way to assess the significance of alignments. Version 1 of Sigma was successful in eliminating spurious alignments but exhibited relatively poor sensitivity on synthetic data. Sigma 1 used a p-value (the probability under the "null hypothesis" of non-homology) to assess the significance of alignments, and, optionally, a background model that captured short-range genomic correlations. Sigma version 2, described here, retains these features, but calculates the p-value using a sophisticated evolutionary model that we describe here, and also allows for a transition matrix for different substitution rates from and to different nucleotides. Our evolutionary model takes separate account of mutation and fixation, and can be extended to allow for locally differing functional constraints on sequence.  相似文献   

2.
A comparison of scoring functions for protein sequence profile alignment   总被引:3,自引:0,他引:3  
MOTIVATION: In recent years, several methods have been proposed for aligning two protein sequence profiles, with reported improvements in alignment accuracy and homolog discrimination versus sequence-sequence methods (e.g. BLAST) and profile-sequence methods (e.g. PSI-BLAST). Profile-profile alignment is also the iterated step in progressive multiple sequence alignment algorithms such as CLUSTALW. However, little is known about the relative performance of different profile-profile scoring functions. In this work, we evaluate the alignment accuracy of 23 different profile-profile scoring functions by comparing alignments of 488 pairs of sequences with identity < or =30% against structural alignments. We optimize parameters for all scoring functions on the same training set and use profiles of alignments from both PSI-BLAST and SAM-T99. Structural alignments are constructed from a consensus between the FSSP database and CE structural aligner. We compare the results with sequence-sequence and sequence-profile methods, including BLAST and PSI-BLAST. RESULTS: We find that profile-profile alignment gives an average improvement over our test set of typically 2-3% over profile-sequence alignment and approximately 40% over sequence-sequence alignment. No statistically significant difference is seen in the relative performance of most of the scoring functions tested. Significantly better results are obtained with profiles constructed from SAM-T99 alignments than from PSI-BLAST alignments. AVAILABILITY: Source code, reference alignments and more detailed results are freely available at http://phylogenomics.berkeley.edu/profilealignment/  相似文献   

3.
Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these “bent” alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of α-helices and β-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root mean squared deviation (RMSD) of Matt alignments is shown to largely separate decoys from homologous protein structures in the SABmark benchmark dataset. We postulate that Matt's strong performance comes from its ability to model proteins in different conformational states and, perhaps even more important, its ability to model backbone distortions in more distantly related proteins.  相似文献   

4.
Computational biology is replete with high-dimensional (high-D) discrete prediction and inference problems, including sequence alignment, RNA structure prediction, phylogenetic inference, motif finding, prediction of pathways, and model selection problems in statistical genetics. Even though prediction and inference in these settings are uncertain, little attention has been focused on the development of global measures of uncertainty. Regardless of the procedure employed to produce a prediction, when a procedure delivers a single answer, that answer is a point estimate selected from the solution ensemble, the set of all possible solutions. For high-D discrete space, these ensembles are immense, and thus there is considerable uncertainty. We recommend the use of Bayesian credibility limits to describe this uncertainty, where a (1−α)%, 0≤α≤1, credibility limit is the minimum Hamming distance radius of a hyper-sphere containing (1−α)% of the posterior distribution. Because sequence alignment is arguably the most extensively used procedure in computational biology, we employ it here to make these general concepts more concrete. The maximum similarity estimator (i.e., the alignment that maximizes the likelihood) and the centroid estimator (i.e., the alignment that minimizes the mean Hamming distance from the posterior weighted ensemble of alignments) are used to demonstrate the application of Bayesian credibility limits to alignment estimators. Application of Bayesian credibility limits to the alignment of 20 human/rodent orthologous sequence pairs and 125 orthologous sequence pairs from six Shewanella species shows that credibility limits of the alignments of promoter sequences of these species vary widely, and that centroid alignments dependably have tighter credibility limits than traditional maximum similarity alignments.  相似文献   

5.
The accuracy of a homology model based on the structure of a distant relative or other topologically equivalent protein is primarily limited by the quality of the alignment. Here we describe a systematic approach for sequence-to-structure alignment, called ‘K*Sync’, in which alignments are generated by dynamic programming using a scoring function that combines information on many protein features, including a novel measure of how obligate a sequence region is to the protein fold. By systematically varying the weights on the different features that contribute to the alignment score, we generate very large ensembles of diverse alignments, each optimal under a particular constellation of weights. We investigate a variety of approaches to select the best models from the ensemble, including consensus of the alignments, a hydrophobic burial measure, low- and high-resolution energy functions, and combinations of these evaluation methods. The effect on model quality and selection resulting from loop modeling and backbone optimization is also studied. The performance of the method on a benchmark set is reported and shows the approach to be effective at both generating and selecting accurate alignments. The method serves as the foundation of the homology modeling module in the Robetta server.  相似文献   

6.
A workbench for multiple alignment construction and analysis   总被引:126,自引:0,他引:126  
Multiple sequence alignment can be a useful technique for studying molecular evolution, as well as for analyzing relationships between structure or function and primary sequence. We have developed for this purpose an interactive program, MACAW (Multiple Alignment Construction and Analysis Workbench), that allows the user to construct multiple alignments by locating, analyzing, editing, and combining "blocks" of aligned sequence segments. MACAW incorporates several novel features. (1) Regions of local similarity are located by a new search algorithm that avoids many of the limitations of previous techniques. (2) The statistical significance of blocks of similarity is evaluated using a recently developed mathematical theory. (3) Candidate blocks may be evaluated for potential inclusion in a multiple alignment using a variety of visualization tools. (4) A user interface permits each block to be edited by moving its boundaries or by eliminating particular segments, and blocks may be linked to form a composite multiple alignment. No completely automatic program is likely to deal effectively with all the complexities of the multiple alignment problem; by combining a powerful similarity search algorithm with flexible editing, analysis and display tools, MACAW allows the alignment strategy to be tailored to the problem at hand.  相似文献   

7.
MOTIVATION: To compare entire genomes from different species, biologists increasingly need alignment methods that are efficient enough to handle long sequences, and accurate enough to correctly align the conserved biological features between distant species. The two main classes of pairwise alignments are global alignment, where one string is transformed into the other, and local alignment, where all locations of similarity between the two strings are returned. Global alignments are less prone to demonstrating false homology as each letter of one sequence is constrained to being aligned to only one letter of the other. Local alignments, on the other hand, can cope with rearrangements between non-syntenic, orthologous sequences by identifying similar regions in sequences; this, however, comes at the expense of a higher false positive rate due to the inability of local aligners to take into account overall conservation maps. RESULTS: In this paper we introduce the notion of glocal alignment, a combination of global and local methods, where one creates a map that transforms one sequence into the other while allowing for rearrangement events. We present Shuffle-LAGAN, a glocal alignment algorithm that is based on the CHAOS local alignment algorithm and the LAGAN global aligner, and is able to align long genomic sequences. To test Shuffle-LAGAN we split the mouse genome into BAC-sized pieces, and aligned these pieces to the human genome. We demonstrate that Shuffle-LAGAN compares favorably in terms of sensitivity and specificity with standard local and global aligners. From the alignments we conclude that about 9% of human/mouse homology may be attributed to small rearrangements, 63% of which are duplications.  相似文献   

8.
BALSA: Bayesian algorithm for local sequence alignment   总被引:3,自引:1,他引:2       下载免费PDF全文
The Smith–Waterman algorithm yields a single alignment, which, albeit optimal, can be strongly affected by the choice of the scoring matrix and the gap penalties. Additionally, the scores obtained are dependent upon the lengths of the aligned sequences, requiring a post-analysis conversion. To overcome some of these shortcomings, we developed a Bayesian algorithm for local sequence alignment (BALSA), that takes into account the uncertainty associated with all unknown variables by incorporating in its forward sums a series of scoring matrices, gap parameters and all possible alignments. The algorithm can return both the joint and the marginal optimal alignments, samples of alignments drawn from the posterior distribution and the posterior probabilities of gap penalties and scoring matrices. Furthermore, it automatically adjusts for variations in sequence lengths. BALSA was compared with SSEARCH, to date the best performing dynamic programming algorithm in the detection of structural neighbors. Using the SCOP databases PDB40D-B and PDB90D-B, BALSA detected 19.8 and 41.3% of remote homologs whereas SSEARCH detected 18.4 and 38% at an error rate of 1% errors per query over the databases, respectively.  相似文献   

9.

Background  

Existing tools for multiple-sequence alignment focus on aligning protein sequence or protein-coding DNA sequence, and are often based on extensions to Needleman-Wunsch-like pairwise alignment methods. We introduce a new tool, Sigma, with a new algorithm and scoring scheme designed specifically for non-coding DNA sequence. This problem acquires importance with the increasing number of published sequences of closely-related species. In particular, studies of gene regulation seek to take advantage of comparative genomics, and recent algorithms for finding regulatory sites in phylogenetically-related intergenic sequence require alignment as a preprocessing step. Much can also be learned about evolution from intergenic DNA, which tends to evolve faster than coding DNA. Sigma uses a strategy of seeking the best possible gapless local alignments (a strategy earlier used by DiAlign), at each step making the best possible alignment consistent with existing alignments, and scores the significance of the alignment based on the lengths of the aligned fragments and a background model which may be supplied or estimated from an auxiliary file of intergenic DNA.  相似文献   

10.
MOTIVATION: Protein sequence alignment plays a critical role in computational biology as it is an integral part in many analysis tasks designed to solve problems in comparative genomics, structure and function prediction, and homology modeling. METHODS: We have developed novel sequence alignment algorithms that compute the alignment between a pair of sequences based on short fixed- or variable-length high-scoring subsequences. Our algorithms build the alignments by repeatedly selecting the highest scoring pairs of subsequences and using them to construct small portions of the final alignment. We utilize PSI-BLAST generated sequence profiles and employ a profile-to-profile scoring scheme derived from PICASSO. RESULTS: We evaluated the performance of the computed alignments on two recently published benchmark datasets and compared them against the alignments computed by existing state-of-the-art dynamic programming-based profile-to-profile local and global sequence alignment algorithms. Our results show that the new algorithms achieve alignments that are comparable with or better than those achieved by existing algorithms. Moreover, our results also showed that these algorithms can be used to provide better information as to which of the aligned positions are more reliable--a critical piece of information for comparative modeling applications.  相似文献   

11.
Structural alignments often reveal relationships between proteins that cannot be detected using sequence alignment alone. However, profile search methods based entirely on structural alignments alone have not been found to be effective in finding remote homologs. Here, we explore the role of structural information in remote homolog detection and sequence alignment. To this end, we develop a series of hybrid multidimensional alignment profiles that combine sequence, secondary and tertiary structure information into hybrid profiles. Sequence-based profiles are profiles whose position-specific scoring matrix is derived from sequence alignment alone; structure-based profiles are those derived from multiple structure alignments. We compare pure sequence-based profiles to pure structure-based profiles, as well as to hybrid profiles that use combined sequence-and-structure-based profiles, where sequence-based profiles are used in loop/motif regions and structural information is used in core structural regions. All of the hybrid methods offer significant improvement over simple profile-to-profile alignment. We demonstrate that both sequence-based and structure-based profiles contribute to remote homology detection and alignment accuracy, and that each contains some unique information. We discuss the implications of these results for further improvements in amino acid sequence and structural analysis.  相似文献   

12.

Background

Existing sequence alignment algorithms use heuristic scoring schemes based on biological expertise, which cannot be used as objective distance metrics. As a result one relies on crude measures, like the p- or log-det distances, or makes explicit, and often too simplistic, a priori assumptions about sequence evolution. Information theory provides an alternative, in the form of mutual information (MI). MI is, in principle, an objective and model independent similarity measure, but it is not widely used in this context and no algorithm for extracting MI from a given alignment (without assuming an evolutionary model) is known. MI can be estimated without alignments, by concatenating and zipping sequences, but so far this has only produced estimates with uncontrolled errors, despite the fact that the normalized compression distance based on it has shown promising results.

Results

We describe a simple approach to get robust estimates of MI from global pairwise alignments. Our main result uses algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory. For animal mitochondrial DNA our approach uses the alignments made by popular global alignment algorithms to produce MI estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. We point out that, due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than traditional measures like the Kimura or log-det (resp. paralinear) distances.

Conclusions

Several versions of MI based distances outperform conventional distances in distance-based phylogeny. Even a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating the significance of specific alignments. It strongly suggests that information theory concepts can be exploited further in sequence analysis.  相似文献   

13.
Multiple sequence alignment using partial order graphs   总被引:14,自引:0,他引:14  
MOTIVATION: Progressive Multiple Sequence Alignment (MSA) methods depend on reducing an MSA to a linear profile for each alignment step. However, this leads to loss of information needed for accurate alignment, and gap scoring artifacts. RESULTS: We present a graph representation of an MSA that can itself be aligned directly by pairwise dynamic programming, eliminating the need to reduce the MSA to a profile. This enables our algorithm (Partial Order Alignment (POA)) to guarantee that the optimal alignment of each new sequence versus each sequence in the MSA will be considered. Moreover, this algorithm introduces a new edit operator, homologous recombination, important for multidomain sequences. The algorithm has improved speed (linear time complexity) over existing MSA algorithms, enabling construction of massive and complex alignments (e.g. an alignment of 5000 sequences in 4 h on a Pentium II). We demonstrate the utility of this algorithm on a family of multidomain SH2 proteins, and on EST assemblies containing alternative splicing and polymorphism. AVAILABILITY: The partial order alignment program POA is available at http://www.bioinformatics.ucla.edu/poa.  相似文献   

14.
Rai BK  Fiser A 《Proteins》2006,63(3):644-661
A major bottleneck in comparative protein structure modeling is the quality of input alignment between the target sequence and the template structure. A number of alignment methods are available, but none of these techniques produce consistently good solutions for all cases. Alignments produced by alternative methods may be superior in certain segments but inferior in others when compared to each other; therefore, an accurate solution often requires an optimal combination of them. To address this problem, we have developed a new approach, Multiple Mapping Method (MMM). The algorithm first identifies the alternatively aligned regions from a set of input alignments. These alternatively aligned segments are scored using a composite scoring function, which determines their fitness within the structural environment of the template. The best scoring regions from a set of alternative segments are combined with the core part of the alignments to produce the final MMM alignment. The algorithm was tested on a dataset of 1400 protein pairs using 11 combinations of two to four alignment methods. In all cases MMM showed statistically significant improvement by reducing alignment errors in the range of 3 to 17%. MMM also compared favorably over two alignment meta-servers. The algorithm is computationally efficient; therefore, it is a suitable tool for genome scale modeling studies.  相似文献   

15.
A novel method is presented for predicting the common secondary structures and alignment of two homologous RNA sequences by sampling the ‘structural alignment’ space, i.e. the joint space of their alignments and common secondary structures. The structural alignment space is sampled according to a pseudo-Boltzmann distribution based on a pseudo-free energy change that combines base pairing probabilities from a thermodynamic model and alignment probabilities from a hidden Markov model. By virtue of the implicit comparative analysis between the two sequences, the method offers an improvement over single sequence sampling of the Boltzmann ensemble. A cluster analysis shows that the samples obtained from joint sampling of the structural alignment space cluster more closely than samples generated by the single sequence method. On average, the representative (centroid) structure and alignment of the most populated cluster in the sample of structures and alignments generated by joint sampling are more accurate than single sequence sampling and alignment based on sequence alone, respectively. The ‘best’ centroid structure that is closest to the known structure among all the centroids is, on average, more accurate than structure predictions of other methods. Additionally, cluster analysis identifies, on average, a few clusters, whose centroids can be presented as alternative candidates. The source code for the proposed method can be downloaded at http://rna.urmc.rochester.edu.  相似文献   

16.
Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ=log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments.  相似文献   

17.

Background  

While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate.  相似文献   

18.
Verification of the PREFAB database containing golden standard protein alignments was performed. It has revealed a significant number of differences between the sequences from PREFAB and PDB databases. It was shown that, compared with the sequences given in the PDB, 575 alignments referred to a sequence with a gap; such alignments were excluded. Furthermore, compared with the PDB sequences, single substitutions or insertions were found for 440 amino acid sequences from PREFAB; these sequences were edited. SCOP domain analysis has shown that only 502 alignments in the resulting set contain sequences from the same family. Finally, eliminating duplicates, we have created a new golden standard alignment database PREFAB-P based on PREFAB; the PREFAB-P database contains 581 alignments.  相似文献   

19.
When aligning biological sequences, the choice of parameter values for the alignment scoring function is critical. Small changes in gap penalties, for example, can yield radically different alignments. A rigorous way to compute parameter values that are appropriate for aligning biological sequences is through inverse parametric sequence alignment. Given a collection of examples of biologically correct alignments, this is the problem of finding parameter values that make the scores of the example alignments close to those of optimal alignments for their sequences. We extend prior work on inverse parametric alignment to partial examples, which contain regions where the alignment is left unspecified, and to an improved formulation based on minimizing the average error between the score of an example and the score of an optimal alignment. Experiments on benchmark biological alignments show we can find parameters that generalize across protein families and that boost the accuracy of multiple sequence alignment by as much as 25%.  相似文献   

20.
MOTIVATION: Membrane-bound proteins are a special class of proteins. The regions that insert into the cell-membrane have a profoundly different hydrophobicity pattern compared with soluble proteins. Multiple alignment techniques use scoring schemes tailored for sequences of soluble proteins and are therefore in principle not optimal to align membrane-bound proteins. RESULTS: Transmembrane (TM) regions in protein sequences can be reliably recognized using state-of-the-art sequence prediction techniques. Furthermore, membrane-specific scoring matrices are available. We have developed a new alignment method, called PRALINETM, which integrates these two features to enhance multiple sequence alignment. We tested our algorithm on the TM alignment benchmark set by Bahr et al. (2001), and showed that the quality of TM alignments can be significantly improved compared with the quality produced by a standard multiple alignment technique. The results clearly indicate that the incorporation of these new elements into current state-of-the-art alignment methods is crucial for optimizing the alignment of TM proteins. AVAILABILITY: A webserver is available at http://www.ibi.vu.nl/programs/pralinewww.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号