首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic bronchitis, a disease mainly of cigarette smokers, shares many clinical features with cystic fibrosis, a disease of altered ion transport, suggesting that the negative effects of cigarette smoke on mucociliary clearance may be mediated through alterations in ion transport. We tested the hypothesis that cigarette smoke extract would inhibit chloride secretion in human bronchial epithelial cells. In agreement with studies in canine trachea, cigarette smoke extract inhibited net chloride secretion without affecting sodium transport. We performed microelectrode impalements and impedance analysis studies to investigate the physiological mechanisms of this inhibition. These data demonstrated that cigarette smoke extract caused an acute increase in membrane resistances in conjunction with apical membrane hyperpolarization, an effect consistent with inhibition of an apical membrane anion conductance. After this acute phase, both membrane resistances decreased while membrane potentials continued to hyperpolarize, indicating that cigarette smoke extract also inhibited the basolateral entry of chloride into the cell. Furthermore, cigarette smoke extract caused an increase in mucin secretion. Therefore, the ion transport phenotype of human bronchial epithelial cells exposed to cigarette smoke extract is similar to that of cystic fibrosis epithelia in which there is sodium absorption out of proportion to chloride secretion in the setting of increased mucus secretion.  相似文献   

2.
Low concentrations of cigarette smoke induced DNA damage and repair without leading to apoptosis in human bronchial epithelial cells. Higher concentrations of cigarette smoke, however, could induce either apoptosis or necrosis. The current study demonstrated that 15% cigarette smoke extract (CSE) induced apoptosis as evidenced by DNA content profiling (17.8 ± 2.1% vs 10.2 ± 1.6% of control, p < 0.05), LIVE/DEAD staining (60.2 ± 2.1% viable cells in CSE-treated vs 86.5 ± 2.3% in control cells, p < 0.05), and COMET assay (24.3 ± 0.6% of Apoptotic Index in the cells treated with CSE vs 4.7 ± 0.6% of control, P < 0.05). Hepatocyte growth factor (HGF) significantly blocked the cigarette smoke-induced apoptosis as shown by DNA profiling (10.8 ± 1.5% of CSE + HGF, p < 0.05), LIVE/DEAD staining (78.5 ± 1.2% in CSE + HGF treated cells, p < 0.05), and COMET assay (Apoptotic Index: 10.0 ± 0.8% in CSE + HGF treated cells, P < 0.05). This protective effect of HGF on CSE-induced apoptosis was abolished by PI3K inhibitors, wortmannin and LY294002, and by introduction of the dominant negative AKT into the cells. Furthermore, CSE plus HGF could induce phosphorylation of AKT Thr 308 and the pro-apoptotic protein, BAD. These results suggest that HGF modulates cell survival in response to cigarette smoke exposure through the PI3K/AKT signaling pathway.  相似文献   

3.

Background

To demonstrate the involvement of tobacco smoking in the pathophysiology of lung disease, the responses of pulmonary epithelial cells to cigarette smoke condensate (CSC) — the particulate fraction of tobacco smoke — were examined.

Methods

The human alveolar epithelial cell line A549 and normal human bronchial epithelial cells (NHBEs) were exposed to 0.4 μg/ml CSC, a concentration that resulted in >90% cell survival and <5% apoptosis. Changes in gene expression and signaling responses were determined by RT-PCR, western blotting and immunocytofluorescence.

Results

NHBEs exposed to CSC showed increased expression of the inflammatory mediators sICAM-1, IL-1β, IL-8 and GM-CSF, as determined by RT-PCR. CSC-induced IL-1β expression was reduced by PD98059, a blocker of mitogen-actived protein kinase (MAPK) kinase (MEK), and by PDTC, a NFκB inhibitor. Analysis of intracellular signaling pathways, using antibodies specific for phosphorylated MAPKs (extracellular signal-regulated kinase [ERK]-1/2), demonstrated an increased level of phosphorylated ERK1/2 with increasing CSC concentration. Nuclear localization of phosphorylated ERK1/2 was seen within 30 min of CSC exposure and was inhibited by PD98059. Increased phosphorylation and nuclear translocation of IκB was also seen after CSC exposure. A549 cells transfected with a luciferase reporter plasmid containing a NFκB-inducible promoter sequence and exposed to CSC (0.4 μg/ml) or TNF-α (50 ng/ml) had an increased reporter activity of approximately 2-fold for CSC and 3.5-fold for TNF-α relative to untreated controls.

Conclusion

The acute phase response of NHBEs to cigarette smoke involves activation of both MAPK and NFκB.  相似文献   

4.
Cigarette smoke is composed of approximately 5% particulate phase and 95% vapour phase by weight. However, routine in vitro toxicological testing of smoke normally only measures the activity of the particulate phase. This study describes a new system for exposing cells at an air-liquid interface to serial dilutions of gaseous smoke. Confluent monolayers of NCI-H292 human lung epithelial cells on semipermeable membranes were placed in a purpose-designed Perspex chamber at an air-liquid interface. The cells were exposed to dilute whole mainstream cigarette smoke for 30 minutes, followed by a 20-hour recovery period. Firstly, high and low delivery cigarettes were compared, and cytotoxicity was determined by using the neutral red uptake assay. Clear differential cytotoxic responses were observed with the two cigarette types, which correlated positively with the concentrations of components in smoke, and particularly compounds in the vapour phase, such as aldehydes. Secondly, low doses of smoke were found to up-regulate mRNA levels of the secreted mucin, MUC5AC, and to stimulate the production of interleukin (IL)-6, IL-8 and matrix-metalloprotease-1, but had no effect on growth-related oncogene alpha. This system will facilitate further investigations into the toxicological mechanisms of cigarette smoke components, and may be useful for studying other gaseous mixtures or aerosols.  相似文献   

5.
6.
We have previously reported that cigarette smoke can induce DNA damage in human lung cells without leading to apoptosis or necrosis. In this study, we report that STAT3 is required for the survival of human bronchial epithelial cells (HBECs) following cigarette smoke-induced DNA damage. Cigarette smoke extract (CSE) exposure increases STAT3 phosphorylation (Tyr 705) and DNA binding activity in HBECs. CSE also stimulates IL-6 release and mRNA expression. Anti-IL-6 neutralizing antibody partially blocks STAT3 activation and renders the cells sensitive to CSE-induced DNA damage. Suppression of STAT3 by siRNA results in severe DNA damage and cell death in response to CSE exposure. These findings suggest that STAT3 mediates HBEC survival in response to CSE-induced DNA damage, at least in part, through the IL-6/STAT3 signaling pathway.  相似文献   

7.
Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.  相似文献   

8.
9.
Cigarette smoke is the principal risk factor for development of chronic obstructive pulmonary disease (COPD). Multidrug resistance-associated protein 1 (MRP1) is a member of the ATP-binding cassette (ABC) superfamily of transporters, which transport physiologic and toxic substrates across cell membranes. MRP1 is highly expressed in lung epithelium. This study aims to analyze the effect of cigarette smoke extract (CSE) on MRP1 activity. In the human bronchial epithelial cell line 16HBE14o-, MRP1 function was studied flow cytometrically by cellular retention of carboxyfluorescein (CF) after CSE incubation and MRP1 downregulation by RNA interference (siRNA). Cell survival was measured by the MTT assay. Immunocytochemically, it was shown that 16HBE14o(-) expressed MRP1 and breast cancer resistance protein. Coincubation of CSE IC50 (1.53% +/- 0.22%) with MK571 further decreased cell survival 31% (p, = 0.018). CSE increased cellular CF retention dose dependently from 1.7-fold at 5% CSE to 10.3-fold at 40% CSE (both p < 0.05). siRNA reduced MRP1 RNA expression with 49% and increased CF accumulation 67% versus control transfected cells. CSE exposure further increased CF retention 24% (p = 0.031). A linear positive relation between MRP1 function and CSE-modulating effects (r = 0.99, p =0.089) was shown in untransfected, control transfected, and MRP1 downregulated 16HBE14o- cells analogous to blocking effects with MRP1 inhibitor MK571 (r = 0.99, p = 0.034). In conclusion, cigarette smoke extract affects MRP1 activity probably competitively in bronchial epithelial cells. Inhibition of MRP1 in turn results in higher CSE toxicity. We propose that MRP1 may be a protective protein for COPD development.  相似文献   

10.
11.
Cigarette smoke, a complex mixture of over 7000 chemicals, contains many components capable of eliciting oxidative stress, which may induce smoking-related disorders, including oral cavity diseases. In this study, we investigated the effects of whole (mainstream) cigarette smoke on human gingival fibroblasts (HGFs). Cells were exposed to various puffs (0.5-12) of whole cigarette smoke and oxidative stress was assessed by 2',7'-dichlorofluorescein fluorescence. The extent of protein carbonylation was determined by use of 2,4-dinitrophenylhydrazine with both immunocytochemical and Western immunoblotting assays. Cigarette smoke-induced protein carbonylation exhibited a puff-dependent increase. The main carbonylated proteins were identified by means of two-dimensional electrophoresis and MALDI-TOF mass spectrometry (redox proteomics). We demonstrated that exposure of HGFs to cigarette smoke decreased cellular protein thiols and rapidly depleted intracellular glutathione (GSH), with a minimal increase in the intracellular levels of glutathione disulfide and S-glutathionylated proteins, as well as total glutathione levels. Mass spectrometric analyses showed that total GSH consumption is due to the export by the cells of GSH-acrolein and GSH-crotonaldehyde adducts. GSH depletion could be a mechanism for cigarette smoke-induced cytotoxicity and could be correlated with the reduced reparative and regenerative activity of gingival and periodontal tissues previously reported in smokers.  相似文献   

12.
Smoking is associated with an increased risk of respiratory diseases, including lung cancer and asthma. However, the mechanisms or diagnostic markers for smoking‐related diseases remain largely unknown. Here we investigated the role of cigarette smoke condensate (CSC) in the regulation of human bronchial epithelial cell (BEAS‐2B) behavior. We found that exposure to CSC significantly inhibited BEAS‐2B cell viability, impaired cell morphology, induced cell apoptosis, triggered oxidative damage, and promoted inflammatory response, which suggests a deleterious effect of CSC on bronchial epithelial cells. In addition, CSC markedly altered the expression of apoptosis‐associated protein factors, including p21, soluble tumor necrosis factor receptor 1, and Fas ligand. In sum, our study identified a panel of novel protein factors that may mediate the actions of CSC on bronchial epithelial cells and have a predictive value for the development and progression of smoking‐related diseases, thus providing insights into the development of potential diagnostic and therapeutic strategies against these diseases.  相似文献   

13.
Cigarette smoke extracts (CSE) induce oxidative stress, an important feature in chronic obstructive pulmonary disease (COPD), and oxidative stress contributes to the poor clinical efficacy of corticosteroids in COPD patients. Carbocysteine, an antioxidant and mucolytic agent, is effective in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on CSE-induced oxidative stress in bronchial epithelial cells as well as the comparison of these antioxidant effects of carbocysteine with those of fluticasone propionate are unknown. The present study was aimed to assess the effects of carbocysteine (10−4 M) in cell survival and intracellular reactive oxygen species (ROS) production (by flow cytometry) as well as total glutathione (GSH), heme oxygenase-1 (HO-1), nuclear-related factor 2 (Nrf2) expression and histone deacetylase 2 (HDAC-2) expression/activation in CSE-stimulated bronchial epithelial cells (16-HBE) and to compare these effects with those of fluticasone propionate (10−8 M). CSE, carbocysteine or fluticasone propionate did not induce cell necrosis (propidium positive cells) or cell apoptosis (annexin V-positive/propidium-negative cells) in 16-HBE. CSE increased ROS production, nuclear Nrf2 and HO-1 in 16-HBE. Fluticasone propionate did not modify intracellular ROS production, GSH and HDCA-2 but reduced Nrf2 and HO-1 in CSE-stimulated 16-HBE. Carbocysteine reduced ROS production and increased GSH, HO-1, Nrf2 and HDAC-2 nuclear expression/activity in CSE-stimulated cells and was more effective than fluticasone propionate in modulating the CSE-mediated effects. In conclusion, the present study provides compelling evidences that the use of carbocysteine may be considered a promising strategy in diseases associated with corticosteroid resistance.  相似文献   

14.
15.
We used a novel perfusion system to expose cultured human umbilical vein endothelial cells (HUVEC) to water-soluble components of cigarette smoke and study subsequent adhesion of flowing neutrophils. Neutrophils did not bind to HUVEC immediately after it had been exposed to cigarette smoke, but many adhered 90-150 min after exposure. The effect was reduced if the exposed medium was made serum-free, but this reduction was partially reversed if low density lipoprotein was added. Treatment of smoke-exposed HUVEC with antibodies against E-selectin or P-selectin reduced adhesion by approximately 50% or 75%, respectively; a combination of both antibodies essentially abolished adhesion. Enzyme-linked immunosorbent assay confirmed that exposure to smoke caused HUVEC to upregulate surface expression of E- and P-selectin. Thus, water-soluble constituent(s) of cigarette smoke cause efficient selectin-mediated capture of flowing neutrophils. This pro-inflammatory response may contribute to pathology associated with smoking, especially in tissues remote from the lung.  相似文献   

16.
17.
Cigarette smoke extracts (CSE) alter TLR4 expression and activation in bronchial epithelial cells. Cilomilast, a phosphodiesterase-4 inhibitor, inhibits cigarette smoke-induced neutrophilia.This study was aimed to explore whether cilomilast, in a human bronchial epithelial cell line (16-HBE), counteracted CSE effects. In particular, TLR4 expression, IP-10 and IL-8 release, lymphocyte and neutrophil chemotactic activity and ERK and IkBa phosphorylation in CSE and LPS-stimulated 16-HBE were assessed.CSE increased TLR4 expression, reduced IP-10 release and lymphocyte chemotactic activity and increased IL-8 release and neutrophil chemotactic activity. Cilomilast reduced TLR4 expression, IL-8 release and neutrophil chemotactic activity as well as it increased IP-10 release and lymphocyte chemotactic activity. All these cilomilast mediated effects were associated with a reduced ERK1/2 and with an increased IkBa phosphorylation.In conclusion, the present study provides compelling evidences that cilomilast may be considered a possible valid therapeutic option in controlling inflammatory processes present in smokers.  相似文献   

18.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

19.
20.
Lipopolysaccharide (LPS) is recognized as an inducer of the inflammatory response associated with gram-negative sepsis and systemic inflammatory response syndrome. LPS induction proceeds through Toll-like receptor (TLR) in immune cells and intestinal epithelial cells (IEC). This report presents the first identification of Bcl10 (B-cell CLL/lymphoma 10) as a mediator of the LPS-induced activation of IL-8 in human IEC. Bcl10 is a caspase-recruitment domain-containing protein, associated with constitutive activation of NF-kappaB in MALT (mucosa-associated lymphoid tissue) lymphomas. The normal human IEC line NCM460, normal primary human colonocytes, and ex vivo human colonic tissue were exposed to 10 ng/ml of LPS for 2-6 h. Effects on Bcl10, phospho-IkappaBalpha, NF-kappaB, and IL-8 were determined by Western blot, ELISA, immunohistochemistry, and confocal microscopy. Effects of Bcl10 silencing by small-interfering RNA (siRNA), TLR4 blocking antibody, TLR4 silencing by siRNA, and an IL-1 receptor-associated kinase (IRAK)-1/4 inhibitor on LPS-induced activation were examined. Following Bcl10 silencing, LPS-induced increases in NF-kappaB, IkappaBalpha, and IL-8 were significantly reduced (P < 0.001). Increasing concentrations of LPS were associated with higher concentrations of Bcl10 protein when quantified by ELISA, and the association between LPS exposure and increased Bcl10 was also demonstrated by Western blot, immunohistochemistry, and confocal microscopy. Exposure to TLR4 antibody, TLR4 siRNA, or an IRAK-1/4 inhibitor eliminated the LPS-induced increases in Bcl10, NF-kappaB, and IL-8. Identification of Bcl10 as a mediator of LPS-induced activation of NF-kappaB and IL-8 in normal human IEC provides new insight into mechanisms of epithelial inflammation and new opportunities for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号